DOI: 10.19812/j.cnki.jfsq11-5956/ts.20240322004

分散固相萃取净化-超高效液相色谱-串联质谱法 同时测定水果中 7 种链格孢霉毒素的含量

汪弘康,高猛峰,沈斯文,王 霞,王 敏,童金蓉,梅 博,黄祎雯, 邓 波,俞 奔,张维谊*

(上海市农产品质量安全中心,上海 201708)

摘 要:目的 建立分散固相萃取净化-超高效液相色谱-串联质谱法快速、准确地同时检测水果中 7 种链格 孢霉毒素的方法。**方法** 试样用酸化乙腈提取,无水硫酸镁除水,氯化钠盐析,上层清液经C₁₈与石墨化碳黑 分散固相萃取净化后,采用超高效液相色谱-串联质谱法测定,基质匹配标准溶液外标法定量。**结果** 7 种链 格孢霉毒素在 0.005~0.500 mg/L 范围内线性关系好(*r*²>0.99),检出限为 0.005 mg/kg,定量限为 0.01 mg/kg, 回收率在 77.30%~114.34%之间,批内相对标准偏差为 0.65%~14.81%,批间相对标准偏差为 0.03%~18.59%。 **结论** 该方法简单、高效,精密度及准确度高,适用于水果中 7 种链格孢霉毒素的测定。 关键词:链格孢霉毒素;分散固相萃取;超高效液相色谱-串联质谱法

Simultaneous determination of 7 kinds of *Alternaria* mycotoxins in fruits by dispersive solid phase extraction combined with ultra performance liquid chromatography-tandem mass spectrometry

WANG Hong-Kang, GAO Meng-Feng, SHEN Si-Wen, WANG Xia, WANG Min, TONG Jin-Rong, MEI Bo, HUANG Yi-Wen, DENG Bo, YU Ben, ZHANG Wei-Yi^{*}

(Shanghai Center of Agri-products Quality and Safety, Shanghai 201708, China)

ABSTRACT: Objective To develop a rapid and accurate method for the simultaneous determination of 7 kinds of *Alternaria* mycotoxins by dispersive solid phase extraction combined with ultra performance liquid chromatography-tandem mass spectrometry in fruits. **Methods** Samples were extracted with acidified acetonitrile, dehydrated by anhydrous magnesium sulfate and salted out with sodium chloride, and the supernatant was cleaned up by dispersive solid-phase extraction with C_{18} and graphitized carbon black. Then determined by ultra performance liquid chromatography-tandem mass spectrometry, quantitatived by substrate matching and external standard calibration method. **Results** The linearity of the method was good in the range of 0.005~0.500 mg/L ($r^2 > 0.99$) and the limits of detection were 0.005 mg/kg, the limits of quantification were 0.01 mg/kg. The recoveries ranged from 77.30% to 114.34% with the relative standard deviation within batches from 0.65% to 14.81% and the relative standard deviation between batches from 0.03% to 18.59%. **Conclusion** The method is simple, efficient, precise

基金项目:上海市"科技创新行动计划"项目(21N31900600)

Fund: Supported by the Project of Shanghai Science and Technology Innovation Action Plan (21N31900600)

^{*}通信作者:张维谊,硕士,研究员,主要研究方向为农产品质量与安全。E-mail: zhangharewei@163.com

^{*}Corresponding author: ZHANG Wei-Yi, Master, Professor, Shanghai Center of Agri-products Quality Safety, Shanghai 201708, China. E-mail: zhangharewei@163.com

and accurate and can be used for the determination of the 7 kinds of *Alternaria* mycotoxins in fruits. **KEY WORDS:** *Alternaria* mytoxins; dispersive solid-phase extraction; ultra performance liquid chromatography-tandem mass spectrometry

0 引 言

链格孢霉菌(Alternaria species)是一种广泛存在于泥 土、腐烂物等环境中的病原体和腐生菌,能通过田间侵染、 贮存接触等途径污染农作物,是水果、蔬菜等农产品在低 温运输或储存过程中腐烂、霉变的主要原因之一[1]。链格 孢霉毒素(Alternaria mycotoxins)是链格孢霉菌产生的代谢 产物,目前已发现 70 余种毒素及其衍生物^[2],其对人或 牲畜具有诱变性、致癌性和致畸性等慢性或急性毒性作 用^[3-6],且与我国食管癌的高发病率有所关联^[7-8]。近年来, 蔬菜、水果中链格孢霉毒素的研究受到越来越多研究者 们的关注,国内外关于链孢霉毒素的污染情况已有相关 报道^[9-12],我国的国家食品安全风险评估中心也连续多年 对小麦、番茄和樱桃等农产品或食品中的链格孢霉毒素开 展了风险监测和评估,以评估其膳食暴露风险。相较于其 他真菌毒素,中国和其他大部分国家一样,目前还未对链 格孢霉毒素制订安全限量要求[13],对链格孢霉毒素研究仍 然较为薄弱[14]。因此,亟需建立一种快速、方便、准确、 灵敏的测定链格孢霉毒素的筛查方法和定量方法、保障农 产品的质量安全。

目前, 链格孢霉毒素的检测主要有酶联免疫吸附 (enzyme linked immunosorbent assay, ELISA)法^[15-16]、薄 层色谱法[17-18]、气相色谱法[19]、气相色谱质谱法[20]、液 相色谱法^[21]、液相色谱质谱法^[22-26]等方法。ELISA 方法 操作简单、快速,但容易出现假阳性结果;薄层色谱法简 单快速,但重复性差;气相色谱法和气相色谱质谱法灵敏 度优异,但需要衍生,操作复杂,重复性差,耗时且成本 高[27]; 液相色谱法和液相色谱-串联质谱法是目前链格孢 霉毒素最常用的测定方法,但样本处理步骤复杂、烦琐, 不适合快速检测。QuEChERS 处理法是近几年受检测工作 者欢迎的一种前处理技术,快速、简单、便宜、高效、耐 用和安全,与传统的液液萃取、固相萃取等样品前处理技 术相比,该法分析速度快、溶剂使用量少、操作及装置简 单且回收率、准确度高、成本低廉^[28-30],近年来在真菌毒 素、农兽药残留等领域获得了广泛应用[31]。因此,本研究 选用结合 QuEChERS 处理法和液相色谱质谱法来检测链 格孢霉毒素,大大缩短了处理时间和分析时间。同时相较 于目前其他的检测方法,本研究也扩充了检测对象至多种 水果,也将难以检测但检出较多的细交链孢菌酮酸、细格 菌素、格孢毒素I等一同纳入检测目标。

本研究以细交链孢菌酮酸(tenuazonic acid, TeA)、交链

孢 酚 (alternariol, AOH)、交 链 孢 酚 单 甲 醚 (alternariol monomethyl ether, AME)、细格菌素(altenusin, ALS)、交链 孢霉烯(altenuene, ALT)、腾毒素(tentoxin, TEN)、格孢毒素 I(altertoxin I, ATX-I)7种链格孢霉毒素为分析对象,优化 QuEChERS 处理过程中的最佳提取试剂和净化剂,并使用 超高效液相色谱-串联质谱法进行测定,建立一种能同时检 测水果中7种链格孢霉毒素的检测方法,以期为大规模批量 快速检测提供一定技术支持。

1 材料与方法

1.1 材料、试剂与仪器

TeA、AOH、AME、ALS、ALT、TEN、ATX-I 标准 品(100 µg/mL、天津阿尔塔科技有限公司); 乙腈、甲酸(色谱 纯,德国 Merck 公司); 无水硫酸镁、氯化钠、碳酸氢铵(分 析纯,国药集团化学试剂有限公司); 十八烷基硅烷键合硅 胶(C₁₈)、石墨化碳黑(graphitized carbon black, GCB)、疏水 性聚四氟乙烯滤膜(polytetrafluoroethylene, PTFE,有机相, 0.22 µm)(上海安谱实验科技股份有限公司)、ACQUITYTM UPLC BEH C₁₈(100 mm ×2.1 mm, 1.7 µm)(美国沃特世公司)。

Qtrap 6500 液相色谱-串联质谱仪(配有电喷雾离子源, 美国 Sciex 公司);分析天平(感量 0.01 g,瑞士 Mettler Toledo 公司); STD. MINI VORTEXER 涡旋混合器(最大转 速为 10000 r/min,美国 Talboys 公司); Multifuge X1R 离心 机(最大转速为 10000 r/min,美国 Thermo Fisher Scientific 公司); Milli-Q 超纯水仪(美国 Millipore 公司)。

1.2 试验方法

1.2.1 标准溶液的配制

标准贮备溶液:准确吸取1mL标准溶液于10mL容 量瓶中,乙腈定容,配成10mg/L的标准贮备液,避光 -18℃以下条件保存。混合标准工作溶液:准确吸取1mL各 标准贮备溶液于10mL容量瓶中,乙腈定容,配成1.0mg/L 的混合标准工作溶液,避光-18℃以下条件保存。

基质匹配标准曲线溶液:将空白样品经本研究的前 处理方法处理,分别制备各样品的空白基质溶液,然后吸 取一定量混合标准工作溶液,用空白基质溶液逐级稀释至 0.005、0.010、0.020、0.050、0.100、0.200、0.500 mg/L 的系列基质匹配标准曲线溶液。

1.2.2 溶液配制

1%甲酸乙腈溶液:量取10mL甲酸于100mL乙腈中,加乙腈稀释至1000mL,混匀。1mmol/L碳酸氢铵溶液:称取0.0791g碳酸氢铵,用水溶解并稀释至1000mL。

1.2.3 样品处理

称取 10 g 试样(精确至 0.01 g)于 50 mL 塑料离心管中, 加入 10.0 mL 1%甲酸乙腈溶液, 剧烈振荡 1 min, 加入 6 g 无水硫酸镁、1.5 g 氯化钠, 剧烈振荡 1 min, 10 000 r/min 离心 5 min。吸取一定量上清液加入净化材料(每毫升提取 液加入 10 mg C₁₈, 对于颜色较深的试样每毫升提取液另加 入 1 mg GCB), 涡旋混匀 1 min, 过 PTFE 滤膜后供液相色 谱-串联质谱测定。

1.2.4 色谱质谱条件

色谱条件: 色谱柱: ACQUITY™ UPLC BEH C₁₈ (100 mm×2.1 mm, 1.7 μm); 柱温: 40°C; 进样体积: 2 μL; 流速: 0.4 mL/min; 流动相 A: 1 mmol/L 碳酸氢铵溶液, 流 动相 B: 乙腈, 梯度洗脱条件见表 1。

表 1 流动相及梯度洗脱条件 Table 1 Mobile phase and gradient elution conditions

时间/min	流动相 A/%	流动相 B/%
0.00	95.0	5.0
0.50	95.0	5.0
3.50	5.0	95.0
6.00	5.0	95.0
6.10	95.0	5.0
8.00	95.0	5.0

质谱条件:离子源:电喷雾离子源;扫描方式:负离 子扫描;检测方式:多反应监测;离子化电压:4.5 kV;离 子化温度:450°C;喷雾气:55 psi;辅助加热气:55 psi。监 测离子对、锥孔电压和碰撞电压见表 2。

表 2 监测离子对、锥孔电压和碰撞电压质谱参数 Table 2 Monitor ions, cone voltage and collision voltage for mass spectralparameters

化合物	保留时间/ min	母离子 (<i>m</i> /z)	子离子 (<i>m</i> /z)	锥孔电压 /V	碰撞电压 /V
To A	2.47	196.0	111.9	-75	-31
10/1	2.47	150.0	139.0	-75	-28
AIS	3 23	289.1	245.0	-60	-22
ALS	5.25	209.1	230.0	-60	-28
ΔΙΤ	3 01	201.1	229.0	-67	-20
ALI	5.91	291.1	247.1	-67	-23
AOU	3.97	257.0	215.2	-80	-36
AOII			213.1	-80	-32
ATX-I	4.16	351.1	315.0	-110	-19
			305.0	-110	-26
TEN	4.30	412.4	141.0	-140	-24
		415.4	271.2	-140	-22
AME	1 65	271.1	256.1	-80	-30
	4.65	2/1.1	228.1	-80	-40

1.3 数据处理

试样中各链格孢霉毒素含量以质量分数 ω 计,单位为 mg/kg,单点校正法按公式(1)或标准曲线法按公式(2)计算:

$$\omega = \frac{\rho_1 \times A \times V}{A_{\rm s} \times m} \times \frac{1000}{1000} \tag{1}$$

$$\omega = \frac{\rho_2 \times V}{m} \times \frac{1000}{1000} \tag{2}$$

式中 ω: 试样中被测组分含量的数值, mg/kg; ρ₁: 基质匹 配标准工作溶液中被测组分的质量浓度的数值, mg/L; ρ₂: 从基质匹配标准工作曲线中得到的试样溶液中被测组分的 质量浓度的数值, mg/L; *A*: 试样溶液中的被测组分的质量 色谱图峰面积; *A*_s: 基质匹配标准工作溶液中被测组分浓 度的质量色谱图峰面积; *V*: 提取液体积的数值, mL; *m*: 试 样质量的数值, g。

2 结果与分析

2.1 色谱-质谱条件的建立

多数链络孢霉毒素在质谱检测中既可以正离子扫描, 也可以负离子扫描,将标准溶液分别注入质谱仪,获得各 离子质荷比及离子通道,并调整质谱条件。发现 ATX-I 在 正离子扫描中响应很低,所以选择以负离子扫描作为扫描 方式。

在不同流动相条件下峰型及响应值差异大。本研究比较了水-乙腈体系、2 mmol/L 甲酸铵(含 0.01%甲酸)-乙腈体系、5 mmol/L 乙酸铵(含 0.01%氨水)-乙腈体系、0.1%甲酸-乙腈体系和 1 mmol/L 碳酸氢铵-乙腈体系等流动相。结果表明,在水-乙腈、2 mmol/L 甲酸铵(含 0.01%甲酸)-乙腈条件下,TeA 的响应及峰型不佳,峰宽过大且有严重拖尾,类似杂峰,无法准确定性;在 5 mmol/L 乙酸铵(含 0.01%氨水)-乙腈条件下,TeA 结构因碱性条件发生改变,其在色谱柱上无保留,在死时间出峰;在 0.1%甲酸-乙腈和 1 mmol/L 碳酸氢铵-乙腈条件下,各化合物峰型都较好,但因甲酸对负离子扫描有一定抑制作用,使用 1 mmol/L 碳酸氢铵-乙腈作为流动相体系,所得的监测离子对色谱图见图 1。

2.2 提取、净化条件的优化

植物源性食品常使用有机溶剂提取目标物,无水硫酸镁除水,氯化钠盐析等提取剂。本研究参考常见QuEChERS方法,试验比较了乙腈、1%甲酸乙腈溶液和1%乙酸乙腈溶液提取,试验结果见图2。1%乙酸乙腈对ALS及TeA回收率不佳,乙腈对TeA回收率不佳,1%甲酸乙腈对7种链铬孢霉毒素回收率都较好。酸性体系增强了TeA的电离性,使其更容易被提取,所以本研究选择使用1%甲酸乙腈溶液作为提取剂。

图 1 1 mmol/L 碳酸氢铵-乙腈体系下 7 种链格孢霉毒素监测离子对色谱图 Fig.1 Chromatogram of 7 kinds of *Alternaria* mycotoxins in 1 mmol/L ammonium bicarbonate-acetonitrile system

QuEChERS 方法常用无水硫酸镁除水,钠盐盐析,使 化合物萃取至乙腈相中。本研究参考常见 QuEChERS 方法, 比较了 3 种盐析剂,4g无水硫酸镁、1g氯化钠、1g柠檬 酸钠二水合物、0.5g柠檬酸二钠盐倍半水合物^[32];6g无水 硫酸镁、1.5g乙酸钠; 6g无水硫酸镁、1.5g氯化钠。结 果见图 3。组合 C 的回收率整体最高,组合 B 对 ALS 和 TeA 回收率大幅降低。柠檬酸钠和乙酸钠皆为弱碱性物

25

质,对于需要酸性电离环境提取的TeA有一定的抑制作用, 造成TeA回收率降低。所以本研究采用6g无水硫酸镁、 1.5g氯化钠作为除水盐析剂。

植物源性食品净化多使用 C₁₈ 吸附脂肪等非极性干扰物; PSA 吸附糖类、脂肪、色素和其他极性有机酸; GCB

吸附平面结构杂质、色素和甾醇等;氧化铝(Al₂O₃,中性 N、酸性 A、碱性 B)吸附脂肪、色素等干扰物。经试验发 现,在复杂、深色基质中,高添加量的净化剂对链格孢霉 毒素的影响不大,而在简单、浅色基质中,随着净化剂的 添加量增多,部分链格孢霉毒素的回收率快速下降。在复 杂基质中,链格孢霉毒素同干扰杂质与净化剂竞争吸附, 净化剂吸附杂质已饱和,所以对链格孢霉毒素回收率影响 不大;而简单基质中干扰杂质少,净化剂吸附杂质后仍未 饱和,开始吸附链格孢霉毒素,造成回收率下降。试验结 果表明,C₁₈对 TeA 吸附作用最大, PSA 对 ALS 和 TeA 吸附 作用最大,GCB对 AOH和 AME 吸附作用最大,Al₂O₃则对ALT、ALS、AME、AOH、TeA、ATX-I都有较强吸附作用,试验结果详见图 4。因此,选择每毫升提取液加入 10 mg C₁₈ 作为净化剂,在深色试样中,每毫升提取液另再加入 1 mg GCB 净化。

此外,本研究还考察了常见的有机相尼龙滤膜和疏水性 PTFE 滤膜对结果的影响。结果发现, PTFE 滤膜对 7 种链格孢霉毒素没有吸附,尼龙滤膜对 ALS、AOH 和 TeA 都有较严重吸附,吸附率可达约 95%、50%和 40%,故本研究后续使用疏水性 PTFE 滤膜过滤样本溶液。

图 4 净化剂对 7 种链格孢霉毒素回收率的影响 Fig.4 Effects of purifying agents on the recoveries of 7 kinds of *Alternaria* mycotoxins

2.3 基质效应评价

由于样品基质复杂,含有大量的内源性化合物,在液 相色谱-串联质谱的使用中,内源性化合物与待测物一同 进入色谱柱, 会干扰目标化合物的检测, 因此需要对基质 效应进行研究[33]。为考察7种链格孢霉毒素在目前的分析 条件下,样品基质对目标物响应值的影响,用各水果的阴 性试样按照上述前处理条件制作成空白基质液,用空白基 质液配制浓度为10 ng/mL的基质标准溶液,同时用1%甲 酸乙腈溶液配制相同质量浓度的标准溶液,同等条件下进 行上机测定,比较基质对各组分响应值的影响,测定结果 详见表 3。基质效应计算公式为:基质效应(%)=B/A×100% (A: 在纯溶剂中化合物的响应值, B: 样品基质中添加的相 同含量化合物响应值),当基质效应值在80%~120%之间时, 则表明基质效应影响不大, 当其高于 120%时则表明有基 质增强效应,当其低于 80%时则表示基质抑制效应^[34]。结 果发现,多数链格孢霉毒素在不同基质都有一定的基质效 应,ALS在多数基质中有较强的基质增强效应,ALT、AME、 AOH 和 AME 则有较强的基质抑制效应。因此,为校正基 质效应对测定结果的影响,本方法采用空白基质溶液配制 标准溶液进行定量。

表 3 不同基质中链格孢霉毒素的基质效应 Table 3 Matrix effects of *Alternaria* mycotoxins in different substrates

27

基质	TEN	ALT	ALS	AME	AOH	TeA	ATX-I
桃	80.0	55.0	114.5	76.5	44.8	118.0	108.2
葡萄	85.1	83.9	138.9	84.6	80.3	109.2	100.3
蓝莓	79.4	37.5	118.6	77.4	66.0	122.6	101.9
櫻桃	81.1	58.6	118.6	76.2	36.0	99.2	117.7
草莓	75.4	55.2	108.5	77.4	42.9	113.6	104.5

2.4 方法学评价

2.4.1 线性范围、检出限、定量限

根据 1.2 中的标准溶液的配制, 绘制标准曲线, 线性范围 0.005 mg/L 至 0.500 mg/L, 得到不同基质下的 7 种链格孢霉毒素的线性关系和相关系数。用阴性试样加标, 经本方法处理后用仪器测定, 以监测离子对大于 3 倍信噪比确定本方法各毒素的检出限, 大于 10 倍信噪比确定各毒素的定量限。7 种链格孢霉毒素的线性范围、相关系数、检出限、定量限如表 4 所示。结果显示, 7 种链格孢霉毒素线性关系良好, 线性相关系数都大于 0.99, 检出限可达 0.005 mg/kg, 定量限为 0.01 mg/kg。

基质	化合物	线性方程	相关系数(r ²)	检出限/(mg/kg)	定量限/(mg/kg)
草莓	АОН	<i>Y</i> =17203.56954 <i>X</i> +9365.63948	0.99883	0.005	0.01
	TeA	<i>Y</i> =1516.85410 <i>X</i> -151.24358	0.99816	0.005	0.01
	ALT	<i>Y</i> =3.68897e4 <i>X</i> +7043.48202	0.99976	0.005	0.01
	TEN	<i>Y</i> =13509.89997 <i>X</i> +8312.98931	0.99945	0.005	0.01
	AME	<i>Y</i> =3.38114e5 <i>X</i> +4.68680e5	0.99257	0.005	0.01
	ALS	<i>Y</i> =6.28462e4 <i>X</i> +4.43262e4	0.99898	0.005	0.01
	ATX-I	<i>Y</i> =19158.54044 <i>X</i> +5865.62929	0.99865	0.005	0.01
	АОН	<i>Y</i> =16963.72823 <i>X</i> +3435.53208	0.99883	0.005	0.01
	TeA	<i>Y</i> =1374.84070 <i>X</i> -1505.24418	0.99707	0.005	0.01
	ALT	<i>Y</i> =3.03014e4 <i>X</i> +11760.00949	0.99958	0.005	0.01
蓝莓	TEN	<i>Y</i> =12961.12931 <i>X</i> +6180.17071	0.99807	0.005	0.01
	AME	<i>Y</i> =2.98624e5 <i>X</i> +5.01076e5	0.99787	0.005	0.01
	ALS	<i>Y</i> =3.68178e4 <i>X</i> -10322.49156	0.99969	0.005	0.01
	ATX-I	<i>Y</i> =16208.89670 <i>X</i> +3005.15634	0.99873	0.005	0.01
	AOH	<i>Y</i> =21202.78739 <i>X</i> +11268.03525	0.99848	0.005	0.01
	TeA	<i>Y</i> =1683.68650 <i>X</i> -896.13348	0.99964	0.005	0.01
	ALT	Y=3.85668e4X+20786.47786	0.99920	0.005	0.01
葡萄	TEN	<i>Y</i> =13833.45342 <i>X</i> +10247.49847	0.99914	0.005	0.01
	AME	<i>Y</i> =3.90747e5 <i>X</i> +4.24462e5	0.99666	0.005	0.01
	ALS	<i>Y</i> =6.67873e4 <i>X</i> +25881.66683	0.99835	0.005	0.01
	ATX-I	<i>Y</i> =19922.17671 <i>X</i> +11097.99854	0.99751	0.005	0.01
桃	AOH	<i>Y</i> =3.46489e4 <i>X</i> +23769.02493	0.99754	0.005	0.01
	TeA	<i>Y</i> =2969.00036 <i>X</i> -490.66316	0.99226	0.005	0.01
	ALT	<i>Y</i> =6.06021e4 <i>X</i> +27438.56403	0.99532	0.005	0.01
	TEN	<i>Y</i> =26426.82732 <i>X</i> +16268.17133	0.99747	0.005	0.01

表 4 不同基质中链格孢霉毒素的线性范围 Table 4 Linear range of *Alternaria* mycotoxins in different substrates

食品安全质量检测学报

表 4(续)

基质	化合物	线性方程	相关系数(r ²)	检出限/(mg/kg)	定量限/(mg/kg)
	AME	<i>Y</i> =6.07871e5 <i>X</i> +6.63884e5	0.99769	0.005	0.01
	ALS	<i>Y</i> =7189.46750 <i>X</i> +10050.97987	0.99509	0.005	0.01
	ATX-I	<i>Y</i> =3.25183e4 <i>X</i> +21120.42089	0.99800	0.005	0.01
	AOH	<i>Y</i> =16022.39449 <i>X</i> +13574.67524	0.99717	0.005	0.01
	TeA	<i>Y</i> =1360.44890 <i>X</i> -1296.50616	0.99632	0.005	0.01
	ALT	<i>Y</i> =28114.36598 <i>X</i> +3.04862e4	0.99901	0.005	0.01
樱桃	TEN	<i>Y</i> =17774.44449 <i>X</i> -33.28573	0.99953	0.005	0.01
	AME	<i>Y</i> =2.63036e5 <i>X</i> +2.39360e5	0.99769	0.005	0.01
	ALS	<i>Y</i> =25613.26518 <i>X</i> -3.71385e4	0.99383	0.005	0.01
	ATX-I	<i>Y</i> =14864.90991 <i>X</i> +10783.44624	0.99797	0.005	0.01

2.4.2 精密度与准确度

在各空白基质中分别以 0.01、0.02 和 0.1 mg/kg 3 个 添加水平,每个添加水平平行测定 6 次,做加标回收试验,并计算回收率及相对标准偏差,并分 3 d 重复加标回收试

验,以验证精密度与准确度,结果见表 5。结果表明,回收 率在 77.30%~114.34%之间,批内相对标准偏差为 0.65%~14.81%,批间相对标准偏差为 0.03%~18.59%,符 合检验检测方法要求。

Table 5 Precision and accuracy of Alternaria mycotoxins in different substrates					
基质	化合物	平均回收率/%	批内相对标准偏差/%	批间相对标准偏差/%	
	TeA	83.60~92.42	3.86~12.00	2.06~9.50	
	AOH	97.45~114.10	1.32~8.63	0.39~10.12	
	AME	104.07~114.34	$0.97 \sim 5.84$	0.99~2.11	
草莓	ALS	103.91~113.68	3.92~11.50	0.59~6.70	
	ALT	98.85~103.40	2.28~8.64	0.31~1.88	
	TEN	96.18~104.33	1.61~4.45	0.56~4.27	
	ATX-I	100.73~108.36	2.15~14.08	$1.81 \sim 2.78$	
	TeA	82.52~89.09	5.10~14.59	0.62~7.41	
	AOH	101.70~112.08	2.28~6.49	3.29~5.52	
	AME	89.39~111.45	3.85~7.02	5.98~17.11	
樱桃	ALS	79.22~97.84	4.06~13.11	10.09~17.24	
	ALT	100.48~109.59	1.28~4.28	2.89~7.38	
	TEN	88.66~101.88	2.42~10.05	5.45~11.62	
	ATX-I	101.40~109.73	0.83~4.85	$2.70 \sim 4.88$	
	TeA	94.34~97.32	4.58~9.07	0.25~2.67	
	АОН	105.45~113.97	1.82~5.15	0.03~3.94	
	AME	105.92~112.64	1.66~5.60	0.49~1.69	
蓝莓	ALS	91.21~112.09	1.49~12.62	1.02~14.48	
	ALT	100.28~107.71	1.42~4.23	0.20~5.04	
	TEN	92.95~107.80	2.18~10.35	2.41~14.80	
	ATX-I	104.37~110.62	1.10~5.12	0.07~2.83	
	TeA	86.76~100.64	8.50~13.90	6.79~10.96	
	AOH	101.62~112.38	1.61~3.28	0.53~4.47	
	AME	96.55~113.35	1.42~2.83	1.54~2.68	
葡萄	ALS	82.16~97.94	2.45~14.81	2.87~11.63	
	ALT	102.37~105.93	1.03~3.91	0.14~1.33	
	TEN	97.62~106.03	2.07~4.21	1.60~3.38	
	ATX-I	102.16~108.89	0.65~3.12	0.54~1.53	
	TeA	77.30~90.37	5.76~13.77	7.57~14.85	
	AOH	98.58~103.36	2.63~8.78	0.33~2.69	
	AME	96.46~111.02	1.31~6.13	6.10~11.77	
桃	ALS	86.11~109.58	4.27~13.78	2.06~18.24	
	ALT	94.94~103.61	1.75~6.09	0.69~8.00	
	TEN	82.29~102.26	3.10~12.66	15.00~18.59	
	ATX-I	96.52~103.62	2.21~4.72	3.45~5.33	

表 5 不同基质中链格孢霉毒素的精密度与准确度 le 5 Precision and accuracy of *Alternaria* mycotoxins in different substrates

2.4.3 实际样品分析

本研究随机选取市售草莓、樱桃、蓝莓、桃及葡萄共 150 批次(每种水果各 30 批次),按试验方法进行测定。结 果显示,有 23 批次样品中检出了 TeA (16 批次)和 AOH (7 批次),其他毒素均未检出。其中蓝莓的检出批次最多,为 13 批次,检出率达到 43.3%;桃的检出批次为 6 批次,检出 率为 20.0%;葡萄和草莓分别检出 2 批次,检出率为 6.67%。 TeA 的检出率达到了 10.7%,平均检出值为 0.079 mg/kg,最 高检出值为 0.25 mg/kg; AOH 的检出率则为 4.67%,平均检 出值为 0.22 mg/kg,最高检出值为 0.34 mg/kg。由此可见,水 果中 TeA 和 AOH 的污染情况较为严重。

3 结 论

本研究建立了一种可同时测定 5 种水果中 7 种链格孢 霉毒素的超高效液相色谱-串联质谱检测方法。样品中的链 格孢霉毒素通过酸化乙腈提取,无水硫酸镁除水,氯化钠 盐析,提取液经 C₁₈与 GCB 分散固相萃取净化后,超高效 液相色谱-串联质谱测定。该方法简单高效、准确灵敏,满 足检验检测要求。与现有的其他文献及检测标准相比,本 研究增加了 TeA、ALS 和 ATX-I 3 种较难检测的化合物,且 具有一定的通用性,适用于多种水果基质中的 7 种链格孢 霉毒素的测定。

参考文献

- 郭润婷. 主要蔬菜链格孢病原菌的鉴定与新病害研究[D]. 北京: 中国农业科学院, 2018.
 GUO RT. The identification of *Alternaria* on vegetable and the research of new diseases in China [D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2018.
- [2] LI L, MA H, ZHENG F, et al. The transcription regulator ACTR controls ACT-toxin biosynthesis and pathogenicity in the tangerine pathotype of *Alternaria* alternata [J]. Microbiol Res, 2021, 248: 126747.
- [3] 姜冬梅, 王瑶, 姜楠, 等. 农产品及其制品中交链孢酚和交链孢酚单甲 醚研究进展[J], 食品科学, 2017, 38(21): 287–293.
 JIANG DM, WANG Y, JIANG N, *et al.* Review on alternariol and alternariol monomethyl ether in agro-products [J]. Food Sci, 2017, 38(21): 287–293.
- [4] FERNÁNDEZ-BLANCO C, JUAN-GARCÍA A, JUAN C, et al. Alternariol induce toxicity via cell death and mitochondrial damage on Caco-2 cells [J]. Food Chem Toxicol, 2016, 88, 32–39.
- [5] BENSASSI F, GALLERNE C, DEIN ESO, et al. Mechanism of alternariol monomethyl ether-induced mitochondrial apoptosis in human colon carcinoma cells [J]. Toxicology, 2011, 290(2/3): 230–240.
- [6] 吴春生,马良,江涛,等. 链格孢霉毒素细交链格孢菌酮酸的研究进展[J]. 食品科学, 2014, 35(19): 295–301.
 WU CS, MA L, JIANG T, *et al.* A review on tenuazonic acid, a toxic produced by *Alternaria* [J]. Food Sci, 2014, 35(19): 295–301.
- [7] 安玉会,卢荣华,冯文舟,等.林县交链孢霉毒素——交链孢醇单甲醚 和交链孢烯的协同毒性和致畸作用研究[J].癌症,1988,(1):54-55.

AN YH, LU RH, FENG WZ, *et al.* Studies on the synergistic toxicity and teratogenicity of sympatric mycotoxins, sympatricin monomethyl ether and sympatricin in Linxian County [J]. Chin J Cancer, 1988, (1): 54–55.

29

[8] 韩绍印,杨胜利,马刚军,等. 酶联免疫吸附试验检测食管癌高、低发 区粮食中交链孢酚单甲醚的研究[J].河南医科大学学报,1995, (3): 219-221.

HAN SY, YANG SL, MA GJ, *et al.* ELISA for the detection of cross-streptophanol monomethyl ether in grains from high and low incidence areas of esophageal cancer [J]. J Henan Med Univ, 1995, (3): 219–221.

- [9] 赵凯. 食品中交链孢毒素污染、生物利用及风险评估研究[D]. 北京: 中国疾病预防控制中心, 2015. ZHAO K. Natural occurrence, bioavailability and risk assessment of *Alternaria* mycotoxins in foods [D]. Beijing: Chinese Center for Diase Control and Prevention, 2015.
- [10] SEBASTIAN H, MARIAN B, SEYMA E, et al. Survey of Alternaria toxincon tamination in food from the German market, using a rapid HPLC-MS/MS approach [J]. Mycotoxin Res, 2016, (32): 7–18.
- [11] 陈蓓,吉文亮,朱峰,等. 江苏省内小麦粉中 4 种交链孢毒素污染情况 调查[J]. 中国公共卫生, 2018, 34(3): 393–395.
 CHEN B, JI WL, ZHU F, *et al.* Contamination of four *Alternaria* toxins in wheat flour sampled in Jiangsu province [J]. Chin J Public Health, 2018, 34(3): 393–395.
- [12] 张林炜. 市售小麦制品中链格孢霉毒素残留和膳食暴露评估[D]. 合肥: 安徽农业大学, 2023.

ZHANG LW. Residual and dietary exposure assessment of *Alternaria* toxins in commercially available wheat products [D]. Hefei: Anhui Agricultural University, 2023.

- [13] MEENA M, SAMAL S. Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects [J]. Toxicol Rep, 2019, 6: 745–758.
- [14] 于松,朱怡平,邹连蓬,等. 链格孢毒素危害及防控措施的研究进展
 [J/OL]. 中国食品卫生杂志: 1–9. [2024-03-07]. http://kns.cnki.net/kcms/ detail/11.3156.R.20230914.1143.002.html
 YU S, ZHU YP, ZOU LP, et al. Research progress on hazards and control measures of Alternaria toxin in food [J/OL]. Chin J Food Hyg: 1–9.
 [2024-03-07]. http://kns.cnki.net/kcms/detail/11.3156.R.20230914.1143.002.html
- [15] WANG J, PENG T, ZHANG X, et al. A novel hapten and monoclonal antibody-based indirect competitive ELISA for simultaneous analysis of alternariol and alternariol monomethyl ether in wheat [J]. Food Control, 2018, 94: 65–70.
- [16] 钟红, 马良, 张宇昊, 等. 细交链格孢菌酮酸间接竞争酶联免疫检测方 法及配套试剂盒的研制[J]. 分析科学学报, 2017, 33(2): 195–200. ZHONG H, MA L, ZHANG YH, *et al.* Study on indirect competitive enzyme immunoassay and rapid detection kit for tenuazonic acid [J]. J Anal Sci, 2017, 33(2): 195–200.
- [17] MATYSIK G, GIRYN H. Gradient thin-layer chromatography and densitometry determination of *Alternaria* mycotoxins [J]. Chromatographia, 1996, 42(9–10): 555–558.
- [18] HASA N, HA H. Alternaria mycotoxins in black rot lesion of tomato fruit: conditions and regulation of their production [J]. Acta Microbiol Et Imm H, 1995, 130(3): 171–177.

- [19] HARVAN DJ, PERO RW. Gas chromatographic analysis of the *Alternaria* metabolite, tenuazonic acid [J]. J Chromatogr A, 1974, 101(1): 222–224.
- [20] SCOTT P, WEBER D, KANHERE S. Gas chromatography-mass spectrometry of *Alternaria* mycotoxins [J]. J Chromatogr A, 1997, 765(2): 255–263.
- [21] 陈月萌. 液相色谱法测定水果中链格孢霉毒素含量的研究[D]. 西安: 陕西师范大学, 2012.
 CHEN YM. Determination of *Alternaria* toxin in fruits by liquid chromatography [D]. Xi'an: Shaanxi Normal University, 2012.
- [22] 倪杨,杨军军,石磊,等. QuEChERS-超高效液相色谱-串联质谱法同时测定坚果中20种真菌毒素[J]. 食品安全质量检测学报, 2022, 13(13): 4107–4116.
 NI Y, YANG JJ, SHI L, *et al.* Simultaneous determination of 20 kinds of mycotoxins in nuts by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry [J]. J Food Saf Qual, 2022, 13(13): 4107–4116.
- [23] 邢家溧,张子庚,郑睿行,等. 固相萃取-超高效液相色谱-串联质谱法 检测婴幼儿奶粉中的7种链格孢霉毒素[J]. 色谱,2022,40(2):156–164. XING JL, ZHANG ZG, ZHENG RH, *et al.* Determination of 7 kinds of *Alternaria* toxins in infant milk powder by solid phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chin J Chromatogr, 2022, 40(2): 156–164.
- [24] 吴希,邢家溧,郑睿行,等.超高效液相色谱-串联质谱法快速检测麦类中典型链格孢霉毒素[J]. 食品科学, 2022, 43(12): 317–324.
 WU X, XING JL, ZHENG RX, *et al.* Rapid determination of typical *Alternaria* toxins in wheat by ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Food Sci, 2022, 43(12): 317–324.
- [25] 张环宇,朱连勤,陈甫,等. 超高效液相色谱-串联质谱法检测家含配合饲料中4种链格孢霉毒素[J]. 中国畜牧杂志, 2023, 59(10): 336–341. ZHANG HY, ZHU LQ, CHEN F, et al. Determination of 4 kinds of Alternaria toxins in poultry feed by ultra performance liquid chromatography-tandem mass spectrometry [J]. Chin J Anim Sci, 2023, 59(10): 336–341.
- [26] 李子豪,林芳,王昌钊,等.超高效液相色谱-四极杆串联离子阱复合 质谱法筛查和定量玉米中 5 种链格孢菌毒素[J]. 食品安全质量检测学 报,2022,13(12):3762-3770.

LI ZH, LIN F, WANG CZ, *et al.* Screening and quantitation of 5 kinds of *Alternaria* toxins in maize by ultra performance liquid chromatography-Q-trap-tandem mass spectrometry [J]. J Food Saf Qual, 2022, 13(12): 3762–3770.

- [27] 何国鑫,邓青芳,周欣. 链格孢霉毒素的分析方法及其毒理机制研究 进展[J]. 食品工业科技, 2018, 39(4): 342–346, 352.
 HE GX, DENG QF, ZHOU X. Research progress of analytical methods and toxicological mechanisms for *Alternaria* mycotoxins [J]. Sci Technol Food Ind, 2018, 39(4): 342–346, 352.
- [28] 周贻兵,兰优,李磊,等. SPE和 QuEChERS 净化测定番茄中链格孢霉 毒素方法比较[J]. 食品研究与开发, 2019, 40(22): 175–179, 196.

ZHOU YB, LAN Y, LI L, *et al.* Comparison of solid phase extraction and QuEChERS for the determination of *Alternaria* toxins in tomato [J]. Food Res Dev, 2019, 40(22): 175–179, 196.

- [29] ZHOU J, XU J, CAI Z, et al. Simultaneous determination of five Alternaria toxins in cereals using QuEChERS-based methodology [J]. J Chromatogr B, 2017, 1068–1069: 15–23.
- [30] XING LJ, ZOU LZ, LUO RF, et al. Determination of five Alternaria toxins in wolfberry using modified QuEChERS and ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Food Chem, 2019, 311(C): 125975.
- [31] 陈建彪, 董丽娜, 刘娇, 等. QuEChERS 在食品中真菌毒素检测的研究 进展[J]. 食品科学, 2014, 35(11): 286–291.
 CHEN JB, DONG LN, LIU J, et al. Advances in application of QuEChERS for mycotoxin analysis in foods [J]. Food Sci, 2014, 35(11): 286–291.
- [32] 王昌钊,李子豪,张亚莉,等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法同时筛查和测定番茄中11种真菌毒素[J/OL]. 食品科学:
 1-14. [2023-08-01]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220916.
 1342.022.html
 WANG CZ, LI ZH, ZHANG YL, et al. Simultaneous screening and
 - WANG CZ, LI ZH, ZHANG YL, et al. Simultaneous screening and determination of 11 kinds of mycotoxins in tomato by ultra-high performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry [J/OL]. Food Sci: 1–14. [2023-08-01]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220916.1342.022.html
- [33] WALRAVENS J, MIKULA H, RYCHLIK M, et al. Development and validation of an ultra-high-performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated *Alternaria* toxins in cereal-based foodstuffs [J]. J Chromatogr A, 2014, 1372: 91–101.
- [34] FRENICH AG, ROBERTO R, MARÍA LG, et al. Multi-mycotoxin analysis in eggs using a QuEChERS-based extraction procedure and ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry [J]. J Chromatogr A, 2011, 1218(28): 4349–4356.

(责任编辑: 蔡世佳 张晓寒)

作者简介

汪弘康,助理畜牧师,主要研究方向 为农产品质量与安全。 E-mail: whk945hh@163.com

张维谊,硕士,农业技术推广研究员, 主要研究方向为农产品质量与安全。 E-mail: zhangharewei@163.com