气相色谱-三重四极杆质谱法同时测定乌梅中 25 种多环芳烃及其污染来源分析

方 丽1, 江 晓2, 李雪莹1, 张 丽1, 黄嘉颖1, 张方圆1*

 [1. 广东省科学院测试分析研究所(中国广州分析测试中心),广东省化学测量与应急检测技术重点实验室, 广东省保健食品功效成分检测与风险物质快速筛查工程技术研究中心,广州 510070;
 2. 广东省食品药品职业技术学校,广州 510663]

摘 要:目的 建立气相色谱-三重四极杆质谱法(gas chromatography-triple quadrupole mass spectrometry, GC-MS/MS)同时测定乌梅中 25 种多环芳烃(polycyclic aromatic hydrocarbons, PAHs),并对污染来源进行分析。 方法 样品经二氯甲烷超声萃取,基质固相分散(matrix solid-phase dispersion, MSPD)净化, DB-EUPAH色谱柱分 离,多反应监测(multiple reaction monitorin, MRM)采集,内标法定量。结果 25 种 PAHs 在 1~500 ng/mL 范围内 线性良好(相关系数 r^2 >0.997),检出限(limits of detection, LODs)为 0.05~0.40 µg/kg,定量限(limits of quantitation, LOQs)为 0.20~1.40 µg/kg,在1、5和20 µg/kg 3个浓度水平的加标回收率为 63.3%~119.0%,相对标准偏差(relative standard deviations, RSDs)为 2.2%~6.5% (n=6)。乌梅样品中除二苯并[a,h]芘(DBahP)外,其余 24 种 PAHs 均有检 出,菲(Phe)、荧蒽(Flt)、芘(Pyr)的含量较高,蒸晒与熏制乌梅中 PAHs 的污染分布存在明显差异。结论 本方法 前处理操作简单、灵敏度高、方法稳定、抗干扰性强,可同时实现乌梅中 25 种 PAHs 的测定。

Simultaneous determination of 25 kinds of polycyclic aromatic hydrocarbons in mume fructus by gas chromatography-triple quadrupole mass spectrometry and their pollution source analysis

FAND Li¹, JIANG Xiao², LI Xue-Ying¹, ZHANG Li¹, HUANG Jia-Ying¹, ZHANG Fang-Yuan^{1*}

[1. Guangdong Provincial Engineering Research Center for Efficacy Component Testing and Risk Substance Rapid Screening of Health Food, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China; 2. Guangdong Food and Drug Vocational College, Guangzhou 510663, China]

ABSTRACT: Objective To establish a gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) method for simultaneous determination of 25 kinds of polycyclic aromatic hydrocarbons (PAHs) in mume fructus, and analyze their pollution source. **Methods** The samples were extracted by dichloromethane ultrasound, purified by matrix solid-phase dispersion (MSPD), separated by DB-EUPAH, collected by multiple reaction monitorin (MRM), and quantified by internal standard method. **Results** The linearity of 25 kinds of PAHs were good in the

基金项目: 广东省重点领域研发计划项目(2019B020211001)

Fund: Supported by the Guangdong Province Key Field Research and Development Plan Project (2019B020211001)

^{*}通信作者:张方圆,硕士,工程师,主要研究方向为食品安全分析,化学分析检测。E-mail:zhangfyde@163.com

^{*}Corresponding author: ZHANG Fang-Yuan, Master, Engineer, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), 2nd Floor, Building A03, No.78 Luntou Road, Haizhu District, Guangzhou 510070, China. E-mail: zhangfyde@163.com

range of 1–500 ng/mL (correlation coefficient $r^2>0.997$), and the limits of detection (LODs) were 0.05–0.40 µg/kg, the limits of quantitation (LOQs) were 0.20–1.40 µg/kg, the recoveries ranged from 63.3% to 119.0% at 3 different level of spiked samples of 1, 5 and 20 µg/kg with the relative standard deviations (RSDs) (n=6) range from 2.2% to 6.5%. The 25 kinds of PAHs were detected in the mume fructus samples, except for dibenzo [a,h]pyrene (DBahP), the content of phenanthrene (Phe), fluoranthene (Flu) and pyrene (Pyr) were high. There were obvious differences in the content and distribution of PAHs between the steamed and smoked products. **Conclusion** The method has simple pre-processing operation, high sensitivity, stable method, strong anti-interference ability, which can be used to determine 25 kinds of PAHs in mume fructus simultaneously.

KEY WORDS: mume fructus; polycyclic aromatic hydrocarbons; gas chromatography-triple quadrupole mass spectrometry; steam-dried; smoke-dried

0 引 言

乌梅, 蔷薇科植物梅[*Prunus mume* (Sieb.) Sieb. et Zucc.]的干燥近成熟果实, 夏季果实近成熟时采收, 经低 温干燥后闷至色变黑而制成^[1], 是一种药食同源食物。乌 梅中含有丰富的氨基酸^[2]、有机酸^[3]、脂肪酸^[4]、多糖等, 还 含有少量甾醇^[5-6], 具有抑菌、抗惊厥、抗氧化、抗病毒、 抗肿瘤、止血、降血脂和血糖等药理作用^[7-9], 能够与其他 药食同源的食物复配形成复方组合物、复配饮品等, 起到 治疗和保健作用^[10-12]。

多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是 由 2 个及以上苯环稠合形成的一类化学危害物,作为持久 性有机污染物,能够通过大气和水等介质进行长距离的迁 移,会造成呼吸系统、神经系统和免疫系统损伤^[13-15]。由 于其持久性和高毒性,已成为威胁人类健康和生态安全的 重要污染物^[16-17],国际癌症研究机构(International Agency for Research on Cancer, IARC)将 25 种 PAHs 认定为 1~3 类 致癌物。环境暴露、生物累积和热处理^[18-19]使乌梅容易受 到 PAHs 污染,随着食品安全研究地不断深入,由乌梅等 药食同源食物中的污染物引起的安全性问题备受关注。

PAHs 的测定方法有高效液相色谱法^[20]、气相色谱-串联质谱法^[21]、拉曼光谱法^[22]等,主要集中在环境(土壤、 水质)^[23-24]和食品(肉制品、水产品、油脂及其制品)领域^[25-27], 鲜少涉及乌梅等药食同源领域。环境样品组成较为简单, 食品样品一般含油脂,且淀粉含量较高,两者在样品基质 组成上与有机酸含量较高的乌梅存在明显差异。检测项目 主要集中在欧盟优控的 16 种 PAHs,未能完全涵盖 IARC 认定具有致癌性的 25 种 PAHs。而且,目前已报道的前处 理方法多采用皂化、加速萃取、微波辅助萃取、固相萃取、 凝胶色谱净化等方式^[28-30],存在前处理烦琐、使用溶剂量 大、耗时长等问题。基于此,本研究应用超声萃取,基质 固相分散(matrix solid-phase dispersion, MSPD)净化,建立 同时测定蒸晒和熏制乌梅中 25 种 PAHs 的气相色谱-三重 四极杆质谱法(gas chromatography-triple quadrupole mass spectrometry, GC-MS/MS),评估不同生产工艺下乌梅中 PAHs 的污染水平,探寻分布特征,分析污染来源,以期为 乌梅中 PAHs 的污染风险监控提供理论和技术支持,为减 少生产加工过程中 PAHs 的产生提供新的思路。

1 材料与方法

1.1 材料与试剂

本研究所采用的乌梅选自安徽亳州、四川成都、广西 玉林 3 个主要产地。

22 种多环芳烃混合标准溶液、7H-苯并[c]芴溶液 (100 μg/mL, 天津阿尔塔科技有限公司); 苯并[e]苋溶液 (100 μg/mL)、环戊烯[c,d]芘(10 μg/mL)(德国 Dr Ehrenstorfer 公司); 7 种氘代多环芳烃混合标准溶液(100 μg/mL, 上海安谱 实验科技股份有限公司); 萘-D8、苊-D10、菲-D10 (1000 μg/mL, 坛墨质检标准物质中心); 二氯甲烷、正己烷、甲苯(色谱纯, 德国 Merck 公司); 基质固相分散填料[乙二胺-N-丙基硅烷 化硅胶(primary secondary amine, PSA): 40~60 μm、十八烷 基键合硅胶(C₁₈): 40~60 μm、石墨化炭黑(graphitized carbon black, GCB): 40~120 μm, 深圳逗点生物技术有限公司]。

1.2 仪器与设备

GCMS-TQ8050 NX 气相色谱-三重四极杆质谱仪[配 有电子轰击(electron impact, EI)离子源及 GCMS Solutions 4.50 数据处理系统,日本 Shimadzu 公司];A11basic 研磨机 (德国 IKA 公司);FB15067 控温型超声器(德国 Fisherbrand 公司);多位试管涡旋振荡器(德国 Heidolph 公司);N-EVAP 112 氮吹仪(美国 Organomation 公司);BSA224S 电子天平 (量感 0.0001 g,德国 Sartorius 公司);CF 16RXII高速冷冻离 心机(日本 Hitachi 公司);DB-EUPAH 石英毛细管柱(20 m ×0.18 mm, 0.14 µm)(美国 Agilent 公司)。

1.3 实验方法

1.3.1 标准溶液的配制

混合标准储备液:分别吸取 22 种多环芳烃混标溶

液、7H-苯并[c]芴、苯并[e]芘、环戊烯[c,d]芘标准物 质溶液,用正己烷稀释,配制成1μg/mL的混合标准储 备液。氘代内标储备液:分别吸取7种氘代多环芳烃混 标、萘-D8、苊-D10、菲-D10标准物质溶液,用正己烷 稀释,配制成10μg/mL的氘代内标储备液。以上溶液 -18℃保存。

混合标准工作液:分别取混合标准储备液 0.001、 0.010、0.050、0.100、0.250、0.400、0.500 mL,加入 10 μg/mL 氘代内标储备液 10 μL,用正己烷定容至1 mL, 得 1、10、50、100、250、400、500 ng/mL 标准工作液, 临用时配制。

1.3.2 样品前处理

样品取果肉部分, 放入-18℃冰箱冷冻 24 h 后, 用研 磨机粉碎, 过 100 目筛, 装入密实袋, 避光冷藏保存。称取 1g样品于 15 mL 离心管中, 依次加入 10 μL 氘代内标储备 液和 10 mL 二氯甲烷, 常温超声萃取 40 min, 4000 r/min 离 心 5 min 后, 取上清液, 用 10 mL 二氯甲烷分两次洗涤残渣, 离心后, 合并上清液于浓缩瓶中, 25℃氮吹至近干, 用二 氯甲烷定容至 1 mL。将提取液转移至 2 mL 装有 25 mg PSA+25 mg C₁₈的净化管中, 涡旋 1 min, 4000 r/min 离心 5 min, 取上清液, 供 GC-MS/MS 分析。

1.3.3 色谱条件

色谱柱: DB-EUPAH 石英毛细管柱(20 m×0.18 mm, 0.14 μm); 升温程序: 80°C保持 2 min, 以 10°C/min 升至 250°C, 保持 2 min, 再以 5°C/min 升至 315°C, 保持 5 min, 最后以 20°C/min 升至 330°C, 保持 6 min; 进样口温度 280°C; 载气(He)流速 1.6 mL/min, 进样量 1 μL, 不分流进样。 1.3.4 质谱条件

EI 离子源(电子能量 70 eV); 传输线温度 330℃; 离子 源温度 230℃; 四极杆温度 150℃; 溶剂延迟 5 min; 多反 应监测(multiple reaction monitorin, MRM), 母离子和子离 子信息及碰撞电压详见表 1。

1.4 数据处理

气相色谱-三重四极杆质谱数据通过 LabSolutions 工作站进行采集和分析,利用 Excel 2013 进行数据分析和图表处理,利用 Origin 8.6 进行色谱图绘制。

2 结果与分析

2.1 萃取条件优化

2.1.1 萃取溶剂的选择

PAHs 不溶于水,随着苯环数的增加,在乙醇、甲醇中 的溶解性逐渐降低,易溶于苯类、二氯甲烷等有机试剂, 选取甲苯、二氯甲烷、正己烷作为萃取溶剂并比较对 PAHs 的萃取效率。结果如图 1 所示,甲苯、二氯甲烷、正己烷 萃取回收率分别为 74.1%~96.1%、93.3%~119.3%和 60.6%~ 82.7%,各项 PAHs 均为二氯甲烷的回收率最高。二氯甲烷 是非对称的四面体结构,具有一定的极性,使得 PAHs 在 二氯甲烷中溶解离子化程度会更高,提高了萃取效率,故 选二氯甲烷作为萃取溶剂。

2.1.2 萃取时间的选择

二氯甲烷作为萃取溶剂,考察了超声 20、30、40、50 min 对萃取效率的影响。结果如图 2 所示,随着超声时间延长,25 种 PAHs 的回收率均逐渐升高,至 40 min 达到峰值 85.1%~108.5%,再增加萃取时间,回收率均无明显变化,综合考虑萃取效率和成本,故选 40 min 作为 萃取时间。

2.2 浓缩条件优化

对加入内标的标准溶液进行浓缩,分别考察 0、25、 50℃氮吹温度下,近干和尽干两种状态。结果显示,当浓 缩至近干状态时,0、25、50℃氮吹温度下 PAHs 的回收率 分别为 92.4%~107.8%、94.2%~109.2%、92.3%~106.4%,可 见浓缩温度对多环芳烃无明显影响。但浓缩至尽干状态时, 内标 Nap-D8、AcP-D10、Phe-D10以及 Nap、AcPy、AcP、 Flu、Phe、Ant 的 3 环内 PAHs 都存在不同程度损耗,呈现 分子量越低损耗越大,且损耗随着氮吹温度的升高而递增, 这与低环芳香烃易挥发、易升华的性质密不可分。故选 25℃氮吹至近干的浓缩方式。

2.3 净化条件优化

经二氯甲烷萃取后,乌梅中的部分色素、脂溶性物质 等进入萃取溶剂, 经浓缩后, 容易引起进样口、色谱柱污 染,并造成色谱峰中杂峰多、基线上升,进而影响定量、 定性结果的准确性。利用基质固相分散对萃取浓缩液进 行净化处理。分别考察 50 mg PSA, 25 mg PSA+25 mg C18, 15 mg PSA+15 mg C₁₈+20 mg GCB 3 种不同配比填料的净 化效果及对回收率的影响。乌梅样品萃取浓缩液经基质固 相分散填料净化后的总离子流图(total ion current, TIC)如 图 3 所示, 经基质固相分散填料净化后, 25 mg PSA+25 mg C18的净化效果明显优于其他两种, 50 mg PSA 净化后依然 存在较多杂峰干扰, 15 mg PSA+15 mg C18+20 mg GCB 净 化后各组分响应强度明显低于其他两种。各项 PAHs 回收 率均呈现 25 mg PSA+25 mg C18>50 mg PSA>15 mg PSA+15 mg C₁₈+20 mg GCB。净化效果与基质固相填料的 性质相关, PSA 能够吸附带负电荷的化合物, 去除有机酸、 极性色素及糖类; C18吸附包括脂肪在类的含长碳链化合物; GCB 能够有效去除萃取浓缩液中的色素, 但是对平面结构 的 PAHs 具有吸附作用,造成结果偏低。故选 25 mg PSA+25 mg C₁₈作为基质固相填料对浓缩后的样品溶液进 行净化处理。

「」を		Ta atte	ble 1 Informati	0n on 25 ki <u>地口術</u>	nds of PAHs and	1.9 kinds of deutera 空車家でみ	ted PAHs inter 亚生素山 正元7	cnal standard 스사 જ 7.74	神徳市 丘 47	书 M 褚 封 打	<u> </u>
町 1	PAHS	同物	CAS No.	本小致	休笛旳 멕/mm	正里呙丁刈	呲裡电压/V	走性离于 刘	呲裡电压/ V	无性离于刘	呲狸电压/Ⅴ
-	萘-D8 (IS)	Nap-D8	1146-65-2		5.906	136.0>108.1	18	136.0>134.1	18	136.0>84.1	18
2	耧	Nap	91-20-3	2	5.955	128.0>102.1	18	128.0>78.1	18	127.00>77.10	15
3	苊烯	AcPy	208-96-8	3	10.088	152.0>150.1	33	152.0>126.1	33	152.00>102.10	33
4	苊-D10 (IS)	AcP-D10	15067-26-2	Ι	10.323	162.0>160.1	18	162.0>158.0	36	163.00>161.10	18
5	垣	AcP	83-32-9	3	10.414	153.0>151.1	36	153.0>126.1	36	153.00>77.10	36
9	苅	Flu	86-73-7	3	11.642	165.0>163.1	27	165.0>115.1	24	166.00>139.10	39
7	菲-D10 (IS)	Phe-D10	1517-22-2	I	14.232	188.0>158.1	39	188.0>160.1	33	188.00 > 184.10	39
8	₩	Phe	85-01-8	ę	14.296	178.0>151.1	36	178.0>176.0	36	179.00>177.10	33
6	薁	Ant	120-12-7	С	14.375	178.0 > 176.0	33	178.0>151.1	36	178.00>128.10	33
10	荧蒽	Flt	206-44-0	4	17.357	202.0 > 200.0	36	202.0>152.1	36	202.00>150.10	39
11	扭	Pyr	129-00-0	4	18.055	202.0 > 200.0	39	202.0>151.0	39	200.00 > 198.00	36
12	7H-苯并[c]芴	BcF	205-12-9	4	18.995	216.0>213.0	39	216.0>189.1	39	213.00>211.10	36
13	苯并[a]蒽-D12 (IS)	BaA-D12	1718-53-2		21.633	240.0>236.1	39	236.0>232.1	39	241.00>237.10	33
14	苯并[a]蒽	BaA	56-55-3	4	21.733	228.0>226.1	39	226.0>224.1	39	229.00>227.00	36
15	䓛-D12 (IS)	Chr-D12	1719-03-5		21.938	240.0>236.0	39	240.0>238.0	15	240.00>212.20	36
16	环戊烯[c,d]芘	CyP	27208-37-3	5	21.733	226.0>224.1	39	224.0>222.0	39	225.00>223.00	39
17	盙	Chr	218-01-9	4	22.058	228.0>226.1	39	226.0>224.0	39	229.00>227.00	39
18	甲基-1,2-苯并菲	MCh	3697-24-3	4	23.840	242.0>239.1	39	242.0>226.1	36	243.00>240.10	39
19	苯并[b]荧蒽-D12 (IS)	BbF-D12	93951-98-5		26.165	264.0>260.0	39	260.0>256.0	39	264.00>236.10	39
20	苯并[b]荧蒽	BbF	205-99-2	5	26.280	252.0>250.0	39	252.0>249.0	39	253.00>250.90	39
21	苯并[k]荧蒽	BkF	207-08-9	5	26.382	252.0>250.0	39	252.0>249.0	39	253.00>251.00	39
22	苯并[1]荧蒽	BjF	205-82-3	5	26.508	252.0>250.0	39	252.0>249.0	39	253.00>251.00	39
23	苯并[a]芘-D12 (IS)	BaP-D12	63466-71-7	I	27.741	264.0>260.0	39	260.0>256.0	39	253.00>251.00	39
24	苯并[a]芘	BaP	50-32-8	5	27.830	252.0>250.0	39	250.0>248.1	39	265.00>261.20	36
25	苯并[e]芘	BeP	192-97-2	5	27.941	252.0>250.0	39	250.0>247.9	39	253.00>251.00	36
26	茚并[1,2,3-cd]芘-D14 (IS)	InP-D14	203578-33-0		32.041	288.0 > 284.0	39	288.0>286.0	33	289.00>284.90	39
27	茚并[1,2,3-cd]芘	InP	193-39-5	9	32.139	276.0>274.0	39	274.0>272.0	39	277.00>274.90	39
28	二苯并[a,h]蒽	DBA	53-70-3	5	32.224	278.0>276.0	39	276.0>273.9	39	279.00>276.90	39
29	苯并[g,h,i]菲-D12 (IS)	BghiP-D12	93951-66-7		33.206	288.0 > 284.0	39	288.0>286.0	36	289.00>285.00	39
30	苯并[g,h,i]菲	BghiP	191-24-2	9	33.312	276.0>274.0	39	274.0>271.9	39	277.00>275.00	39
31	二苯并[a,1]芘	DBalP	191-30-0	9	37.989	302.0>300.0	39	300.0>298.0	36	303.00>301.00	39
32	二苯并[a,e]芘	DBaeP	192-65-4	9	39.603	302.0>300.0	39	300.0>298.0	36	303.00>301.10	39
33	二苯并[a,i]芘	DBaiP	189-55-9	9	40.320	302.0>300.0	39	300.0>298.0	39	303.00>300.90	39
34	二苯并[a,h]芘	DBahP	189-64-0	9	40.729	302.0>300.0	39	300.0>298.0	39	303.00>301.20	36
注: IS 表)	示内标, 与目标 PAHs 前面相邻	8的氘代内标作	为该目标 PAHs f	约定量内标	;—表示该物质作	自为内标, 不做苯环	数统计。				

表1 25种多环芳烃和9种氘代多环芳烃内标相关信息

响应强度

2.4 色谱条件优化

DB-EUPAH 具有极强热稳定性,程序升温最高使用 温度可达 340°C,能够准确分析二苯并芘等高沸点物质。 25 种 PAHs 中有 6 组(17 种物质)同分异构体,通过优化升 温程序,实现有效分离。为了避免了由于进样的一致性及 样品基质效应导致的偶然误差,并部分补偿 PAHs 各组分 在前处理时的损失,加入对应的氘代内标或化学结构相似 物的氘代内标共9种,使用内标法进行定量。优化后 25 种 PAHs 和 9 种氘代内标的 TIC 如图 4 所示。

2.5 质谱条件优化

选用 MRM 模式,确定具有特异性的母离子后将其进行碰撞诱导,去除其他子离子干扰,只对选定的特异子离子进行质谱信号的采集,具有灵敏度高、特异性强、准确性高等优点。使用 Smart Database 对质谱条件进行优化,利用 Smart MRM 功能,根据预测的保留时间和预先登记的最优 MRM 离子通道,自动配置"时间采集程序",自动创建分析 方法。优化后母离子、子离子和碰撞电压如表1所示。

2.6 方法学评价

2.6.1 线性范围、检出限及定量限

在优化条件下, 配制 1、10、50、100、250、400、500 ng/mL 标准工作曲线溶液, 以 PAHs 与氘代 PAHs 内标的质量浓度比作为横坐标, PAHs 与氘代 PAHs 内标峰面积的比值作为纵坐标, 采用最小二乘法进行回归分析, 得到一定质量浓度范围内 PAHs 的线性拟合方程及相关系数。采用信噪比法评估方法检出限(limit of detection, LOD)和定量限(limit of quantitation, LOQ), 以3倍信噪比确定 LOD, 10倍信噪比确定 LOQ, 结果如表2所示。各项 PAHs 在 1~500 ng/mL

的质量浓度范围线性良好,线性相关系数 r²>0.997,检出限 为 0.05~0.40 μg/kg,定量限为 0.20~1.40 μg/kg,优于 GB 5009.265—2021《食品安全国家标准 食品中多环芳烃的测 定》称样量为 1 g 时的检出限和定量限,能够满足各国对 PAHs 限量的要求。

表 2 多环芳烃线性方程、方法检出限及定量限 Table 2 Standard curves, LODs and LOQs for PAHs

检测项目	线性拟合方程	相关系数 r ²	LODs /(µg/kg)	LOQs /(µg/kg)	
Nap	<i>Y</i> =1.2288 <i>X</i> -0.0702	0.9995	0.30	1.00	
AcPy	<i>Y</i> =1.5443 <i>X</i> -0.0934	0.9994	0.20	0.70	
AcP	<i>Y</i> =1.7730 <i>X</i> -0.0197	0.9981	0.20	0.70	
Flu	<i>Y</i> =1.1217 <i>X</i> -0.1170	0.9982	-0.20	0.70	
Phe	<i>Y</i> =1.8367 <i>X</i> -0.2126	0.9978	0.20	0.70	
Ant	<i>Y</i> =1.1341 <i>X</i> -0.1047	0.9984	0.20	0.70	
Flt	<i>Y</i> =3.4866 <i>X</i> -0.2529	0.9983	0.10	0.40	
Pyr	<i>Y</i> =2.6274 <i>X</i> -0.3067	0.9979	0.05	0.20	
BcF	<i>Y</i> =1.1487 <i>X</i> -0.1338	0.9977	0.05	0.20	
BaA	<i>Y</i> =3.4773 <i>X</i> -0.3962	0.9979	0.20	0.70	
СуР	Y=0.5056X-0.0543	0.9980	0.20	0.70	
Chr	<i>Y</i> =3.2180 <i>X</i> -0.3282	0.9991	0.10	0.40	
MCh	<i>Y</i> =0.9969 <i>X</i> -0.1331	0.9972	0.10	0.40	
BbF -	<i>Y</i> =3.1363 <i>X</i> =0.3285	0.9979	0.10	0.40	
BkF	<i>Y</i> =1.4493 <i>X</i> -0.1548	0.9977	0.10	0.40	
BjF	<i>Y</i> =2.1704 <i>X</i> -0.2265	0.9981	0.10	0.40	
BaP	<i>Y</i> =3.6906 <i>X</i> -0.4045	0.9980	0.10	0.40	
BeP	<i>Y</i> =1.9234 <i>X</i> -0.2183	0.9979	0.20	0.70	
InP	<i>Y</i> =2.3313 <i>X</i> -0.3043	0.9974	0.30	1.00	
DBA	<i>Y</i> =3.2967 <i>X</i> -0.4025	0.9977	0.30	1.00	
BghiP	<i>Y</i> =2.1667 <i>X</i> -0.1523	0.9991	0.30	1.00	
DBalP	<i>Y</i> =1.5834 <i>X</i> -0.1357	0.9987	0.30	1.00	
DBaeP	<i>Y</i> =1.0155 <i>X</i> -0.1268	0.9979	0.30	1.00	
DBaiP	<i>Y</i> =0.4795 <i>X</i> -0.0673	0.9978	0.40	1.40	
DBahP	<i>Y</i> =0.4607 <i>X</i> -0.0637	0.9977	0.40	1.40	

2.6.2 精密度和回收率

由于乌梅样品中均含有一定量的 PAHs, 经考察 25 种 PAHs 的基质效应(matrix effect, ME)均小于 20%, 无显著基 质效应。因此选取同一批次各项 PAHs 含量均较低的乌梅 样品经二氯甲烷提取去除 PAHs, 残渣低温烘干后获得空 白基质样品再进行精密度和回收率实验。分别选取 1、5、 20 µg/kg低中高 3 个样品浓度水平按照 1.3 方法,进行 6 平 行加标回收实验,得到平均加标回收率分别为 63.3~ 119.0%、72.7%~118.6%、86.7%~108.6%,相对标准偏差 (relative standard deviations, RSDs)分别为 3.1%~6.5%、 3.4%~5.2%、2.2%~3.5%。回收率及 RSD 满足 GB/T 27417— 2017《合格评定 化学分析方法确认和验证指南》相应浓 度水平要求,方法重复性良好。

2.7 乌梅中 PAHs 的含量及分布研究

采用本方法分别对蒸晒与熏制两种炮制工艺制作的 共11 批次的乌梅样品进行 PAHs 含量检测,如遇超过标准 曲线浓度的 PAH 稀释到标准工作曲线浓度范围。乌梅中 25 种 PAHs 及总量结果如表 3 所示。乌梅样品中除 DBahP 外, 其余 24 种 PAHs 均有检出, Phe、Flt、Pyr 的含量较高;各项 及总量数值跨度较大,总量从 351.2 µg/kg 至 9707 µg/kg 不 等;蒸晒与熏制乌梅的 PAHs 含量及分布存在明显差异, 蒸晒乌梅中 PAHs 各含量均小于熏制乌梅,分布未呈现明 显规律性,这与不同产地的环境基质有密切联系;8 种熏制 乌梅中各项 PAHs 含量明显高于蒸晒乌梅,且均是 Phe 含 量最高,占检出 PAHs 总量的 17.7%~31.0%,其次为 Flt、 Pyr、Chr、CyP,它们之和占检出 PAHs 总量的 64.8%~72.7%, 与蔡美贞^[31]对本草香颗粒态多环芳烃的检测结果相近,符 合 Phe、Flt、Pyr、Chr 作为木材燃烧的标识物的特性,这 与乌梅的熏制工艺密切相关。

欧盟法规(EU) 2015/1125、韩国食品法典以及我国 GB 2762—2022《食品安全国家标准 食品中污染物限量》 规定了食品中 BaP 等 PAHs 的限量,不同的食品类别 BaP 限值从 2.0 µg/kg 至 10 µg/kg; EU 2020/1255 列出了干草药 中 PAHs 的限量,并规定 BaP 最大限量为 10 µg/kg, BaP、 BaA、BbA 和 Chr 总量的最大限量为 50 µg/kg。结果显示, 两种炮制工艺乌梅样品的 BaP 以及 4 项 PAHs 总量均超过 该限量规定。

PAHs 的毒性与苯环数密不可分,通常认为低相对分子质量 PAHs (2~3 环)具有显著的短期毒性,高相对分子质量 PAHs (2~3 环)具有潜在的致癌性。乌梅样品中 PAHs 量的 PAHs (2~6 环)具有潜在的致癌性。乌梅样品中 PAHs 分布如图 5 所示,蒸晒乌梅中 PAHs 主要集中在 4 环和 5 环,占比 70.8%~80.2%,熏制乌梅中 PAHs 主要集中在 3 环和 4 环,占比 72.8%~85.9%。PAHs 的含量及苯环数分布与乌梅的生长环境、采收后晾晒条件以及炮制工艺密不可分。PAHs 污染特征分析显示环境(大气、水、土壤)以 3~6 环为主要污染物,沥青中以 2~4 环为主,烟熏(树木树枝杂草做燃料或硫熏法)引人 2~4 环^[32]。结果显示,乌梅样品中 PAHs 主要来源于培植环境与晾晒条件,熏制乌梅中 PAHs 主要来源于培植环境与晾晒条件,熏制乌梅中 PAHs 大部分由烟熏的炮制方式带入。

			100100		in mu	会县/(us/l-	Sampres (n				
PAHs						召重/(μg/kg)				
	1	2	3	4	5	6	7	8	9	10	11
Nap	10.4	123.4	163.4	149.3	192.7	138.9	184.9	205.8	148.2	16.2	43.9
AcPy	3.9	2.3	3.1	11.3	106.6	5.4	16.8	43.3	58.6	23.2	21.9
AcP	ND	ND	ND	20.39	59.47	12.18	24.81	53.05	29.24	16.47	43.67
Flu	2.6	39.3	37.0	125.1	370.9	71.9	176.2	362.7	181.9	73.2	192.8
Phe	23	216	283	1300	3009	894	1832	2282	1746	1142	2108
Ant	5.0	12.6	37.7	145.9	392.1	116.7	188.8	290.1	239.2	167.1	236.3
Flt	55	233	437	782	1482	877	1102	1211	1171	1035	1504
Pyr	94	184	387	656	1302	778	853	1093	956	1018	1403
BcF	ND	15.8	52.9	55.0	103.2	90.8	78.6	99.0	96.1	217.0	346.0
BaA	21.6	83.2	246.4	288.9	504.7	418.1	544.9	461.8	433.4	421.7	634.5
CyP	22.0	81.7	280.0	329.1	520.9	443.1	486.4	522.0	440.8	268.3	351.6
Chr	27.6	139.6	302.2	435.2	654.0	543.0	728.2	673.9	550.0	560.4	967.5
MCh	ND	5.94	22.63	31.03	39.81	54.85	76.34	52.53	63.84	30.65	51.19
BbF	16.6	100.9	130.5	129.5	202.9	143.2	292.7	179.1	137.5	117.9	184.2
BkF	8.4	73.0	62.5	62.2	105.5	77.8	176.2	86.4	70.6	59.8	87.8
BjF	7.3	68.4	65.7	66.6	111.9	77.1	167.2	94.9	75.6	65.9	100.5
BaP	13.9	28.9	66.4	68.4	125.1	76.4	181.3	103.4	87.8	137.8	223.7
BeP	14.9	38.2	89.8	108.0	206.4	127.0	236.8	172.4	157.7	55.2	82.2
InP	9.2	21.0	45.2	43.1	84.0	48.2	130.8	65.4	54.2	43.4	55.7
DBA	ND	4.3	12.4	24.3	27.8	17.4	152.8	24.0	10.0	11.8	18.0
BghiP	15.47	20.29	44.09	43.56	90.56	37.40	80.55	60.66	45.71	31.13	59.00
DBalP	ND	1.04	4.39	6.00	15.61	4.12	11.51	8.94	6.44	1.70	8.39
DBaeP	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.91	8.28
DBaiP	ND	ND	ND	ND	ND	ND	ND	ND	ND	12.72	4.06
DBahP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
总量	351	1492	2773	4881	9707	5053	7723	8145	6759	5533	8736

表 3 乌梅样品中多环芳烃含量(n=3) Table 3 PAHs content in mume fructus samples (n=3)

注: 1~3 为蒸晒(非熏制,1 原味、2 蒸晒、3 九蒸九晒), 4~11 为熏制; ND 为未检出,表示低于方法检出限。

图 5 乌梅样品中多环芳烃环数分布 Fig.5 Distribution of PAHs ring number in mume fructus samples

3 结 论

本研究通过对萃取、浓缩、净化条件的选择,色谱、 质谱条件的优化,建立气相色谱-三重四极杆质谱法同时 测定乌梅中 25 种 PAHs 的方法。样品经超声萃取,基质固 相分散净化,氘代内标法定量。方法线性范围 1~500 ng/mL, 检出限 0.05~0.40 µg/kg,优于分子印迹固相萃取^[25]、加速溶 剂萃取、凝胶渗透色谱净化^[29]等相关方法的检出限,方法 操作简便,灵敏度高、选择性强,适用于乌梅中 25 种 PAHs 的污染现状调查,满足日常监督和检测要求。通过对乌梅 中 PAHs 的含量测定和分布研究,探究 PAHs 来源,蒸晒乌 梅主要来源于生长环境、采收后晾晒条件,而熏制乌梅除 受上述条件影响之外,还受木材等燃料熏制影响。本研究 结论提示,须积极推动相关法规的制订,从根本上提高乌 梅品质,保障消费者的食品安全,促进企业发展。

参考文献

国家药典委员会.中华人民共和国药典[M]. 2000 年版.北京:中国医药科技出版社, 2000.
 Chinese Pharmacopocia Commission. The pharmacopocia of the People's

Republic of China [M]. 2000 Ed. Beijing: China Medical Technology Press, 2000.

- [2] 李江含, 雷鑫, 杨婷, 等. PITC 柱前衍生 HPLC 测定乌梅 17 种氨基酸的含量[J]. 中药材, 2019, 42(6): 1334–1338.
 LI JH, LEI X, YANG T, *et al.* Determination of 17 amino acids in wumei by PITC pre column derivative HPLC [J]. J Chin Med Mater, 2019, 42(6): 1334–1338.
- [3] 群培, 翟雪, 金乾, 等. UPLC 法测定不同海拔及不同采收期乌梅中枸 橡酸和苹果酸[J]. 中成药, 2019, 41(6): 1338–1343. QUN P, ZHAI X, JIN Q, *et al.* Determination of citric acid and malic acid in prunus mume from different altitudes and different gathering periods by UPLC [J]. Chin Tradit Pat Med, 2019, 41(6): 1338–1343.
- [4] WANG R, CHENG H, YANG YT, et al. Ultra-performance liquid chromatography-quadrupole-time of flight tandem-mass spectrometry and liquid chromatograph-tandem mass spectrometer combined with chemometric analysis an approach for the quality evaluation of mume fructus [J]. J Sep Sci, 2022, 45(11): 1884–1893.
- [5] WANG SR, WEI SJ, ZHU YM, et al. Comparative investigation of the

differences in chemical compounds between raw and processed mume fructus using plant metabolomics combined with chemometrics methods [J]. Molecules, 2022, 27(19): 6344–6344.

- [6] 杨亚湉, 王瑞, 钱程程, 等. 乌梅化学成分、药理作用研究进展及质量标志物预测[J]. 中成药, 2023, 45(5): 1583–1588. YANG YT, WANG R, QIAN CC, *et al.* Research progress on chemical composition and pharmacological effects of mume fructus and prediction of quality markers [J]. Chin Tradit Pat Med, 2023, 45(5): 1583–1588.
- [7] LIU ZH, PENG Y, MA P, et al. An integrated strategy for anti-inflammatory quality markers screening of traditional chinese herbal medicine mume fructus based on phytochemical analysis and anti-colitis activity [J]. Phytomedicine, 2022, 99: 154002.
- [8] XU ZY, ZHANG XL, WANG WY, et al. Fructus mume (wu mei) attenuates acetic acid-induced ulcerative colitis by regulating inflammatory cytokine, reactive oxygen species, and neuropeptide levels in model rats [J]. J Med Food, 2022, 25(4): 389–401.
- [9] 李春帅,辛洁萍,王海丽,等. 乌梅炒炭前后化学成分与药效变化及其 炒炭止血原理研究[J]. 中草药, 2022, 53(24): 7714-7720.
 LI CS, XIN JP, WANG HL, *et al.* Changes in chemical composition and medicinal effect of mume fructus before and after charcoal frying and its principle of hemostasis [J]. Chin Tradit Herb Drugs, 2022, 53(24): 7714-7720.
- [10] 李莹, 吴莎莎, 曹璨, 等. 山楂、乌梅、葡萄皮、枸杞、桑葚复方组合物的体内降血脂作用[J]. 食品工业科技, 2022, 43(18): 365–370.
 LI Y, WU SS, CAO C, *et al. In vivo* hypolipidemic effect of the compound composition of crataegus, mume fructus, grape skin, wolfberry and mulberry [J]. Sci Technol Food Ind, 2022, 43(18): 365–370.
- [11] 张恒,郑俏然,何靖柳,等. 藏茶玫瑰乌梅无糖复合饮料研制及功能性 成分分析与抗氧化研究[J]. 食品科技, 2021, 46(1): 46-53, 61. ZHANG H, ZHENG QR, HE JL, *et al.* Development, functional components and antioxidant activity of sugar-free compound beverage of tibetan tea, rose and mume fructus [J]. Food Sci Technol, 2021, 46(1): 46-53, 61.
- [12] 陈晗,周静,许洪玲,等.黄连乌梅提取物对LPS所致炎症小鼠的影响及机制研究[J].中药药理与临床,2023,39(5):46-51.
 CHEN H, ZHOU J, XU HL, *et al.* The effect and mechanism of Huanglian Wumei extract on LPS induced inflammation in mice [J]. Pharmacol Clin Chin Mater, 2023, 39(5): 46-51.
- [13] SHUKLA S, KHAN R, PROSUN B, et al. Concentration, source apportionment and potential carcinogenic risks of polycyclic aromatic hydrocarbons(PAHs) in roadside soils [J]. Chemosphere, 2022, 292(4): 133413.
- [14] 汪素芳. 环境有机污染物生物毒性及检测分析[M]. 北京: 化学工业出版社, 2019.
 WANG SF. Biological toxicity and detection analysis of environmental
- organic pollutants [M]. Beijing: Chemical Industry Press, 2019. [15] 刘宇星,刘蕙萍, 宋阳, 等. 食用油中持久性有机污染物的研究进展[J]. 粮食与油脂, 2023, 36(4): 18–20, 50. LIU YX, LIU HP, SONG Y, *et al.* Research progress on persistent organic

pollutants in edible oils [J]. Cere Oils, 2023, 36(4): 18–20, 50.

- [16] LI Y, LI N, ZHANG XL, et al. A modified receptor model for source apportionment of sediment polycyclic aromatic hydrocarbons [J]. J Environ Manage, 2022, 318: 115637.
- [17] SHI MW, ZHANG RZ, WANG YX, et al. Health risk assessments of polycyclic aromatic hydrocarbons and chlorinated/brominated polycyclic

aromatic hydrocarbons in urban air particles in a haze frequent area in China [J]. Emerg Contam, 2020, 6: 172–178.

- [18] REN HL, SU PX, KANG W, et al. Heterologous spatial distribution of soil polycyclic aromatic hydrocarbons and the primary influencing factors in three industrial parks [J]. Environ Pollut, 2022, 310: 119912.
- [19] 肖静, 严志宏, 姚雪莲, 等. 多环芳烃污染在中药中的存在及分析方法 研究进展[J]. 中成药, 2023, 45(3): 874–880.
 XIAO J, YAN ZH, YAO XL, *et al.* Research progress on the presence and analysis methods of polycyclic aromatic hydrocarbon pollution in traditional Chinese medicine [J]. Chin Tradit Pat Med, 2023, 45(3): 874–880.
- [20] 申睿,曾习文,李莎,等.高效液相色谱-二极管阵列检测器-荧光检测器检测辣条中 16 种多环芳[J]. 食品安全质量检测学报, 2022, 13(12): 3960–3966.
 SHEN R, ZENG XW, LI S, *et al.* Determination of 16 kinds of polycyclic aromatic hydrocarbons in spicy strip by high performance liquid

chromatography-diode array detector-fluorescence detector [J]. J Food Saf Qual, 2022, 13(12): 3960–3966.

[21] 王玮,郭蓉,赵莹,等. 气相色谱-三重四极杆质谱法测定婴幼儿配方
 乳粉中 24 种多环芳烃的含量[J]. 理化检验-化学分册, 2022, 58(11):
 1287-1293.

WANG W, GUO R, ZHAO Y, *et al.* Determination of 24 polycyclic aromatic hydrocarbons in infant formula milk powder by gas chromatography-triple quadrupole mass spectrometry [J]. Phys Test Chem Anal Part B, 2022, 58(11): 1287–1293.

- [22] 尹雄翼,石元博,王胜君,等. 基于 ML-PCA-BP 模型的多环芳烃拉曼 光谱定量分析[J]. 光谱学与光谱分析, 2023, 43(3): 861–866.
 YIN XY, SHI YB, WANG SJ, et al. Quantitative analysis of polycyclic aromatic hydrocarbons using Raman spectroscopy based on ML-PCA-BP model [J]. Spectrosc Spectr Anal, 2023, 43(3): 861–866.
- [23] 张馥颖,许明,周增幸,等.长三角工业园区土壤中多环芳烃和邻苯二 甲酸酯的污染现状及来源解析[J].生态与农村环境学报,2023,39(8): 1077-1085.

ZHANG FY, XU M, ZHOU ZX, *et al.* Pollution status and source analysis of polycyclic aromatic hydrocarbons and phthalates in soil of industrial parks in the Yangtze River Delta [J]. J Ecol Rural Env, 2023, 39(8): 1077–1085.

[24] 王军淋,张念华,应英,等.固相萃取-高效液相色谱-紫外串联荧光检测器同时检测水源水和自来水中的16种多环芳烃[J].卫生研究,2020, 49(3):480-485.

WANG JL, ZHANG NH, YING Y, *et al.* Simultaneous determination of 16 polycyclic aromatic hydrocarbons in source water and tap water by performance liquid chromatography with ultraviolet detector tandem fluorescence detector combined with solid phase extraction [J]. J Hyg Res, 2020, 49(3): 480–485.

- [25] 姚珊,李永利,陈鹰,等. 气相色谱-同位素稀释质谱法测定肉中多环 芳烃含量[J]. 食品科学, 2019, 40(12): 321–325.
 YAO S, LI YL, CHEN Y, *et al.* Determination of 16 polycyclic aromatic hydrocarbons in meat samples by gas chromatography-isotope dilution mass spectrometry approach [J]. Food Sci, 2019, 40(12): 321–325.
- [26] 房翠兰, 王贵敏, 向利, 等. 优化 QuEChERS 结合 LC-MS-MS 法测定 水产品中 8 种多环芳烃的研究[J]. 食品与发酵科技, 2021, 57(3):

152-156, 163.

FANG CL, WANG GM, XIANG L, *et al.* Determination of 8 polycyclic aromatic hydrocarbons in aquatic products by LC-MS-MS coupled with optimized QuEChERS [J]. Food Ferment Sci Technol, 2021, 57(3): 152–156, 163.

- [27] 刘宇星,易守福,徐文泱,等. 气相色谱-三重四极杆质谱法测定食用 植物油中 57 种有机污染物[J]. 食品与机械, 2023, 39(6): 65–74.
 LIU YX, YI SF, XU WY, *et al.* Determination of 57 organic pollutants in edible vegetable oil by gas chromatography triple quadrupole mass spectrometry [J]. Food Mach, 2023, 39(6): 65–74.
- [28] 孙细珍, 杜佳炜, 钱全全, 等. 气相色谱-质谱法检测益智药材中 16 种 多环芳烃[J]. 分析测试学报, 2021, 40(5): 732-739.
 SUN XZ, DU JW, QIAN QQ, et al. Determination of 16 polycyclic aromatic hydrocarbons in Alpinia oxyphylla miq by gas chromatographymass spectrometry [J]. J Instrum Anal, 2021, 40(5): 732-739.
- [29] 胡国绅,余可垚,张睿萱,等.加速溶剂萃取-凝胶渗透色谱-气相色谱-串联质谱法测定中华绒螯蟹中 16 种多环芳烃[J].食品安全质量检测 学报,2021,12(17):6894-6901.

HU GS, YU KY, ZHANG RX, et al. Determination of 16 kinds of polycyclic aromatic hydrocarbons in *Eriocheir sinensis* by accelerated solvent extraction-gel permeation chromatography-gas chromatographytandem mass spectrometry [J]. J Food Saf Qual, 2021, 12(17): 6894–6901.

[30] 林菊,马阳阳,黄昊龙,等. 热加工肉制品中多环芳烃的检测技术研究
 进展[J]. 食品与发酵工业,2021,47(21):282–289.

LIN J, MA YY, HUANG HL, *et al.* Research progress on detection technology of polycyclic aromatic hydrocarbons in hot processed meat products [J]. Food Ferment Ind, 2021, 47(21): 282–289.

- [31] 察美贞. 超声提取-气相色谱。质谱法测定本草香中 16 种颗粒态多环芳 经含量及其排放特征分析[J]. 色谱, 2022, 40(12): 1111–1118.
 CAI MZ. Determination of 16 particle-phase polycyclic aromatic hydrocarbons in herbal incense by ultrasonic extraction-gas chromatographymass spectrometry and analysis of emission characteristics [J]. Chin J
- Chromatogr, 2022, 40(12): 1111–1118.
 [32] ZHANG CC, LI YL, WANG CL, *et al.* Polycyclic aromatic hydrocarbons (PAHs) in marine organisms from two fishing grounds, South Yellow Sea, China: Bioaccumulation and human health risk assessment [J]. Mar Pollut Bull. 2020, 153: 110995.

(责任编辑:郑 丽 张晓寒)

作者简介

方 丽,硕士,工程师,主要研究方向 为食品安全分析,化学分析检测。 E-mail: 84984579@qq.com

张方圆,硕士,工程师,主要研究方向 为食品安全分析,化学分析检测。 E-mail: zhangfyde@163.com