采用气相色谱-质谱联用仪分析 水中挥发性有机物

刘鑫顺, 李金文

(广州禾信仪器股份有限公司,广州 510530)

摘要:本文使用禾信 GCMS 1000 气质联用仪和顶空装置,按照 HJ810-2016 方法对水样进行加标回收实验。实验结果表明,在 $10~\mu g/L$ -400 $\mu g/L$ 的浓度范围内,目标物的标准曲线相关系数 r 均大于 0.995,精密度为 2.65%-14.87%,水样加标回收率为 70.0%-128.9%,方法检出限在 $1.5~\mu g/L$ -6.2 $\mu g/L$ 范围内,均满足 HJ810-2016 标准要求。

关键词:水:挥发性有机物

挥发性有机物(VOCs)是指在常温下,沸点 50℃至 260℃的各种有机化合物,包括多非甲烷碳氢化合物、含氧有机化合物、卤代烃、含氮有机化合物和含硫有机化合物等几大类。 大多数 VOCs 具有令人不适的特殊气味,并具有毒性、刺激性、致畸性和致癌作用,特别 是苯、甲苯及卤代烃等对人体健康会造成很大的伤害,因此环境中的挥发性有机物的检测 对保障人体健康和保护环境起到非常重要的作用。

本文参考《水质 挥发性有机物的测定 顶空/气相色谱-质谱法》标准(HJ 810-2016),使用顶空进样器和气相色谱-质谱联用仪进行水中挥发性有机物分析,通过检出限、精密度和准确度等指标评估仪器性能,证明 GCMS 1000 满足水中挥发性有机物检测的需要。

1 材料和方法

1.1 样品制备

顶空瓶中预先加入 4.0g 氯化钠,加入 10mL 水样,加入标准品和适量内标,放置在顶空装置托盘中,待测。

1.2 仪器条件

表1 仪器方法参数

模 块	参 数	值
	加热平衡温度	70°C
顶空进样器	加热平衡时间	40min
	阀体温度	120°C

	传输线温度	105°C
	进样体积	1mL
	进样口温度	250°C
	进样方式	分流(分流比5:1)
	色谱柱系统	DB-624 (30m×0.25mm×1.4μm)
各並		起始温度40°C,保持2 min,
色谱	升温程序	以5°C/min升至120°C,保持3min,以10°C/min升至
		230 °C
	载气	氦气
	柱流量	1.0 mL/min 恒流模式
	离子源	EI, 70eV
	离子源温度	250°C
正 法	接口温度	250°C
质谱	检测器电压	-1280V
	质量采集范围	45-300amu
	采集速率	1000amu/s
	采集模式	全扫描

2 结果与讨论

2.1 仪器性能评价

通过微量注射器移取1μL 25 mg/L四溴氟苯(BFB)的溶液,直接注入气相色谱仪进行分析,得到BFB质谱图,对质谱图进行离子丰度评价。评价结果见图1,BFB各离子丰度比均符合HJ 810-2016标准要求。

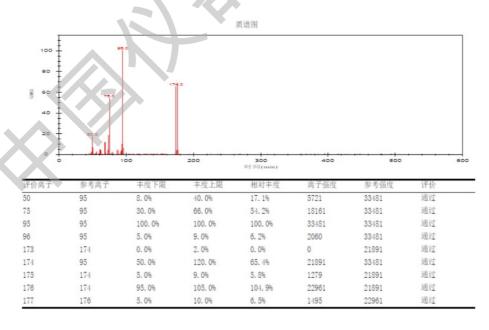


图1 BFB性能评价结果

2.2 标准谱图和物质信息

实验总离子流图见图2,水样作为基质,目标化合物加标浓度400μg/L,内标加标浓度为 200 μg/L。各目标物和内标出峰顺序、保留时间以及特征离子信息见表2。

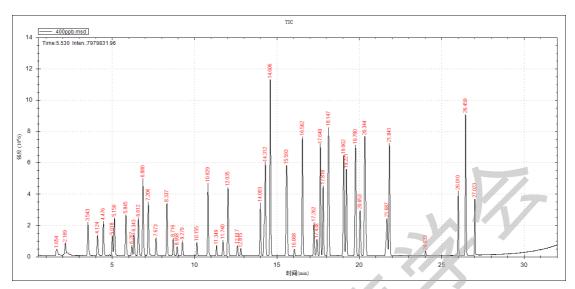
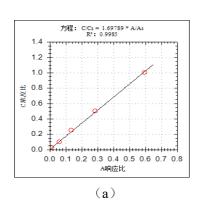
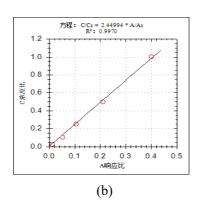


图2 HJ810-2016水样加标实验总离子流图 (400 μ g/L)


表2 55种挥发性有机物和2种内标的保留时间和特征离子信息表


 序号	II ∧ ilm	CAG	DT.	定量离子	
一一一	化合物	CAS	RT, min	m/z	m/z
1	氯乙烯	75-01-4	2.178	62.1	64.0
2	1,1-二氯乙烯	75-35-4	3.538	96.0	61.1、63.0
3	二氯甲烷	75-09-2	4.128	84.0	49.1、86.0
4	反式-1,2-二氯乙烯	156-60-5	4.476	96.0	61.0、98.0
5	1,1,-二氯乙烷	75-00-3	5.022	63.1	65.1、83.0
6	2,2-二氯丙烷	594-20-7	5.837	77.1	97.0
7	顺式-1,2-二氯乙烯	156-59-2	5.854	96.0	61.0、98.0
8	溴氯甲烷	74-97-5	6.207	127.9	49.0、129.9
9	氯仿	67-66-3	6.343	83.0	85.0、47.0
10	1,1,1-三氯乙烷	71-55-6	6.598	97.0	99.0、61.1
11	1,1-二氯丙烯	563-58-6	6.871	75.1	110.0, 77.0
12	四氯化碳	56-23-5	6.880	116.9	118.9、120.9
13	苯	71-43-2	7.206	78.1	77.1、51.1
14	1,2-二氯乙烷	107-06-2	7.232	62.1	64.0, 98.0
15	氟苯(内标1)	462-06-6	7.673	96.1	77.0
16	三氯乙烯	79-01-6	8.342	95.0	130.0, 132.0
17	1,2-二氯丙烷	78-87-5	8.716	63.1	62.1
18	二溴甲烷	74-95-3	8.954	93.0	173.9, 95.0
19	一溴二氯甲烷	75-27-4	9.279	83.0	85.0、126.9
20	顺-1,3-二氯丙烯	10061-01-5	10.155	75.1	77.1
21	甲苯	108-88-3	10.829	91.1	92.1
22	反-1,3-二氯丙烯	10061-02-6	11.349	75.1	77.1

23	1,1,2-三氯乙烷	79-00-5	11.736	83.0	97.0、85.0
24	四氯乙烯	127-18-4	12.040	165.9	128.9、167.9
25	1,3-二氯丙烷	142-28-9	12.084	76.1	78.1
26	二溴一氯甲烷	124-48-1	12.617	128.9	126.9、131.0
27	1,2-二溴乙烷	106-93-4	12.815	106.9	109.0、187.9
28	氯苯	108-90-7	14.003	112.0	77.1、114.0
29	1,1,1,2-四氯乙烷	630-20-6	14.237	131.0	133.0、118.9
30	乙苯	100-41-4	14.307	91.1	106.1
31/32	间,对-二甲苯	108-38-3/ 106-42-3	14.606	106.1	91.1
33	邻-二甲苯	95-47-6	15.584	106.1	91.1
34	苯乙烯	100-42-5	15.633	104.1	103.1, 78.1
35	三溴甲烷	75-25-2	16.068	172.9	174.9、253.8
36	异丙苯	98-82-8	16.562	105.1	120.1
37	溴苯	108-86-1	17.262	156.1	77.1、158.0
38	1,1,2,2-四氯乙烷	79-34-5	17.425	83.0	85.0、131.0
39	1,2,3-三氯丙烷	96-18-4	17.455	75.1	110.0、77.1
40	正丙苯	103-65-1	17.649	91.1	120.1
41	2-氯甲苯	95-49-8	17.816	91.1	126.1
42	4-氯甲苯	106-43-4	18.111	91.1	126.1
43	1,3,5-三甲基苯	108-67-8	18.155	105.1	120.1
44	叔丁基苯	98-06-6	19.062	119.1	91.1、134.2
45	1,2,4-三甲基苯	95-63-6	19.221	105.1	120.1
46	仲丁基苯	193-39-5	19.776	105.1	134.2
47	1,3-二氯苯	541-73-1	20.053	146.0	148.1、111.0
48	4-异丙基甲苯	99-87-6	20.335	119.1	134.1、91.1
49	1,4-二氯苯	106-46-7	20.383	146.0	148.0、111.0
50	1,2-二氯苯-D4(内标2)	2199-69-1	21.638	150.1	152.0、115.1
51	1,2-二氯苯	95-50-1	21.695	146.0	148.0、111.0
52	正丁基苯	104-51-8	21.841	91.1	92.1、134.2
53	1,2-二溴-3-氯丙烷	96-12-8	24.033	157.0	75.0、155.0
54	1,2,4-三氯苯	120-82-1	26.041	179.9	182.0、145.0
55	六氯丁二烯	87-68-3	26.459	224.9	226.8、222.9
56	萘	91-20-3	26.494	128.1	127.2、129.1
57	1,2,3-三氯苯	87-61-6	27.023	180.0	182.0、144.9

2.3 标准曲线

纯水作为基质,分别配制目标物浓度为 10μg/L、40μg/L、100μg/L、200μg/L、400μg/L, 内标浓度为 200μg/L 的混合标准曲线溶液进行分析。55 种挥发性有机物的线性相关系数 r 均大于 0.995,显著优于标准的要求校准曲线的相关系数≥0.99。

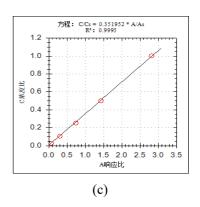


图3 三种代表性物质标准曲线图: (a) 氯乙烯, (b) 1,3-二氯丙烷, (c) 邻二甲苯

表3 55种目标物标准曲线线性相关系数

序	ルム畑	线性相关	序号	化本栅	线性相关	序	/\ △#m	线性相关
号	化合物	系数 r	沙 万	化合物	系数 r	号	化合物	系数 r
1	氯乙烯	0.9985	20	甲苯	0.9980	40	2-氯甲苯	0.9998
2	1,1-二氯 乙烯	0.9985	21	反-1,3-二 氯丙烯	0.9952	41	4-氯甲苯	0.9997
3	二氯甲烷	0.9967	22	1,1,2-三氯 乙烷	0.9954	42	1,3,5-三甲 基苯	0.9998
4	反式-1,2- 二氯乙烯	0.9995	23	四氯乙烯	0.9983	43	叔丁基苯	0.9993
5	1,1,-二氯 乙烷	0.9996	24	1,3-二氯 丙烷	0.9970	44	1,2,4-三甲 基苯	0.9998
6	2,2-二氯 丙烷	0.9992	25	二溴一氯甲烷	0.9988	45	仲丁基苯	0.9975
7	顺式-1,2- 二氯乙烯	0.9992	26	1,2-二溴 乙烷	0.9978	46	1,3-二氯 苯	0.9992
8	溴氯甲烷	0.9986	27	氯苯	0.9998	47	4-异丙基 甲苯	0.9977
9	氯仿	0.9994	28	1,1,1,2-四 氯乙烷	0.9989	48	1,4-二氯 苯	0.9968
10	1,1,1-三氯 乙烷	0.9989	29	乙苯	0.9998	49	1,2-二氯 苯	0.9979
11	1,1-二氯 丙烯	0.9983	30/31	间,对-二 甲苯	0.9999	50	正丁基苯	0.9984
12	四氯化碳	0.9960	32	邻-二甲苯	0.9995	51	1,2-二溴 -3-氯丙烷	0.9956
13	苯	0.9990	33	苯乙烯	0.9976	52	1,2,4-三氯 苯	0.9991
14	1,2-二氯 乙烷	0.9989	34	三溴甲烷	0.9990	53	六氯丁二 烯	0.9957
15	三氯乙烯	0.9992	35	异丙苯	0.9981	54	萘	0.9959
16	1,2-二氯 丙烷	0.9986	36	溴苯	0.9961	55	1,2,3-三氯 苯	0.9957

17	二溴甲烷	0.9986	37	1,1,2,2-四 氯乙烷	0.9961
18	一溴二氯 甲烷	0.9982	38	1,2,3-三氯 丙烷	0.9960
19	顺-1,3-二 氯丙烯	0.9966	39	正丙苯	0.9999

2.4 水样加标回收实验

1) 精密度

分别对水样进行加标浓度为 $20\mu g/L$ 、 $100\mu g/L$ 和 $300\mu g/L$ 各六次平行实验,对精密度进行评估,具体信息详见下表 4。浓度为 $20\mu g/L$ 的目标物的相对标准偏差(RSD)在 3.49%-14.76%范围内,浓度为 $100\mu g/L$ 和 $300\mu g/L$ 时,RSD 分别在 2.77%-14.87%和 2.65%-9.87%范围内。浓度为 $20\mu g/L$ 和 $100\mu g/L$ 的实验结果均优于标准实验室内精密度 RSD 水平 0.50%-24.00%和 0.40%-28.00%。

表4 55种目标物水样加标精密度

序	化合物	加标	浓度(μg	/L)	序号	化合物	加标	浓度(μg/	<u>(L)</u>
_号	化音物	20	100	300	17.2	化百物	20	100	300
1	氯乙烯	4.50%	9.77%	4.58%	28	1,1,1,2-四 氯乙烷	5.99%	6.17%	6.79%
2	1,1-二氯 乙烯	5.67%	11.12%	2.83%	29	乙苯	10.70%	12.01%	5.92%
3	二氯甲烷	7.25%	5.82%	4.63%	30/31	间,对 - 二 甲苯	9.08%	12.43%	5.26%
4	反式-1,2- 二氯乙烯	8.06%	8.68%	3.19%	32	邻-二甲苯	5.96%	10.69%	5.84%
5	1,1,-二氯 乙烷	8.87%	6.44%	2.74%	33	苯乙烯	5.14%	8.23%	5.29%
6	2,2-二氯 丙烷	11.14%	8.05%	9.62%	34	三溴甲烷	14.76%	6.61%	8.91%
7	顺式-1,2- 二氯乙烯	5.35%	4.87%	2.91%	35	异丙苯	11.35%	14.02%	4.16%
8	溴氯甲烷	11.29%	2.89%	6.50%	36	溴苯	5.33%	5.40%	5.48%
9	氯仿	8.30%	5.20%	2.65%	37	1,1,2,2-四 氯乙烷	11.71%	4.85%	3.32%
10	1,1,1-三 氯乙烷	12.32%	10.47%	5.49%	38	1,2,3-三氯 丙烷	10.90%	6.08%	9.87%
11	1,1-二氯 丙烯	8.03%	11.58%	5.01%	39	正丙苯	11.01%	6.73%	4.87%
12	四氯化碳	5.51%	12.56%	4.72%	40	2-氯甲苯	7.43%	5.96%	4.51%
13	苯	7.04%	7.54%	3.11%	41	4-氯甲苯	5.64%	11.79%	4.23%
14	1,2-二氯	14.03%	3.88%	5.12%	42	1,3,5-三甲	10.42%	14.07%	4.41%

	乙烷					基苯			
15	三氯乙烯	8.04%	10.33%	4.07%	43	叔丁基苯	9.48%	14.66%	4.35%
16	1,2-二氯 丙烷	6.04%	3.97%	3.25%	44	1,2,4-三甲 基苯	9.05%	13.53%	4.78%
17	二溴甲烷	12.87%	6.37%	5.37%	45	仲丁基苯	8.87%	14.54%	3.99%
18	一溴二氯 甲烷	10.34%	4.84%	3.47%	46	1,3-二氯苯	4.91%	9.50%	3.61%
19	顺-1,3-二 氯丙烯	10.22%	3.87%	3.90%	47	4-异丙基 甲苯	8.26%	14.87%	4.99%
20	甲苯	8.16%	8.36%	4.01%	48	1,4-二氯苯	4.95%	8.94%	3.30%
21	反-1,3-二 氯丙烯	10.10%	5.17%	5.58%	49	1,2-二氯苯	5.65%	6.80%	3.92%
22	1,1,2-三 氯乙烷	9.74%	3.49%	4.11%	50	正丁基苯	8.24%	12.92%	4.15%
23	四氯乙烯	10.69%	11.53%	5.37%	51	1,2-二溴 -3-氯丙烷	9.01%	6.13%	8.80%
24	1,3-二氯 丙烷	12.29%	3.86%	4.24%	52	1,2,4-三氯 苯	3.49%	10.10%	6.12%
25	二溴一氯 甲烷	11.51%	4.92%	3.92%	53	六氯丁二 烯	8.89%	7.91%	8.16%
26	1,2-二溴 乙烷	14.27%	5.67%	3.96%	54	萘	14.73%	2.77%	4.95%
27	氯苯	5.30%	8.37%	5.80%	55	1,2,3-三氯 苯	6.65%	7.23%	5.45%

2) 准确度

分析 10mL 水样加标(浓度分别为 20μg/L、100μg/L、300μg/L),对方法回收率进行评估,具体信息详见下表 5。加标浓度为 20μg/L、100μg/L 和 300μg/L 水样基质的回收率分别为 70.2%-128.1%、70.3%-128.9%、70.0%-127.8%,均符合标准基体加标回收率 70.0%-130.0%水平。

表5 55种目标物水样加标回收率

序	化合物	加标浓度(μg/L)			序号	化合物	加标	加标浓度(μg/L)		
号	7C H 10	20	100	300	Π' '3	7L H 10	20	100	300	
1	氯乙烯	72.1%	79.5%	70.5%	28	1,1,1,2-四 氯乙烷	89.8%	90.4%	91.1%	
2	1,1-二氯 乙烯	72.4%	77.3%	73.8%	29	乙苯	75.0%	81.6%	78.7%	
3	二氯甲 烷	75.0%	77.8%	74.6%	30/31	间,对 - 二 甲苯	76.6%	82.1%	78.8%	
4	反式 -1,2-二 氯乙烯	76.7%	83.0%	81.2%	32	邻 - 二甲 苯	82.1%	87.0%	85.6%	

5	1,1,-二 氯乙烷	82.3%	87.3%	88.9%	33	苯乙烯	88.4%	91.6%	91.0%
6	2,2-二氯 丙烷	77.4%	87.7%	71.4%	34	三溴甲烷	93.0%	82.9%	85.0%
7	顺式 -1,2-二 氯乙烯	88.1%	91.6%	93.2%	35	异丙苯	71.8%	74.3%	73.3%
8	溴氯甲 烷	94.2%	87.4%	92.5%	36	溴苯	98.9%	99.7%	96.6%
9	氯仿	85.6%	91.6%	94.2%	37	1,1,2,2-四 氯乙烷	128.1%	128.9%	127.8%
10	1,1,1-三 氯乙烷	71.3%	82.1%	80.1%	38	1,2,3-三 氯丙烷	109.1%	100.1%	101.6%
11	1,1-二氯 丙烯	73.7%	78.9%	77.5%	39	正丙苯	72.3%	73.3%	76.2%
12	四氯化 碳	70.2%	75.8%	76.2%	40	2-氯甲苯	80.3%	83.0%	84.0%
13	苯	85.2%	91.2%	92.1%	41	4-氯甲苯	81.7%	85.3%	83.4%
14	1,2-二氯 乙烷	99.8%	95.1%	97.1%	42	1,3,5-三 甲基苯	74.6%	80.7%	79.5%
15	三氯乙 烯	70.3%	76.7%	75.8%	43	叔丁基苯	73.0%	72.6%	74.8%
16	1,2-二氯 丙烷	93.2%	97.5%	99.5%	44	1,2,4-三 甲基苯	76.5%	82.5%	82.4%
17	二溴甲 烷	98.6%	90.2%	93.2%	45	仲丁基苯	70.5%	70.3%	70.8%
18	一溴二 氯甲烷	90.9%	91.1%	94.6%	46	1,3-二氯 苯	91.0%	88.8%	85.7%
19	顺-1,3- 二氯丙 烯	103.2%	100.9%	97.1%	47	4-异丙基 甲苯	70.8%	70.5%	71.4%
20	甲苯	83.2%	93.1%	93.5%	48	1,4-二氯 苯	96.0%	92.3%	87.3%
21	反-1,3- 二氯丙 烯	107.9%	99.7%	95.2%	49	1,2-二氯 苯	99.0%	96.2%	94.0%
22	1,1,2-三 氯乙烷	105.8%	100.2%	103.7%	50	正丁基苯	72.3%	70.8%	70.0%
23	四氯乙烯	71.7%	79.2%	78.24%	51	1,2-二溴 -3-氯丙烷	114.8%	105.0%	108.1%
24	1,3-二氯 丙烷	107.8%	101.8%	104.9%	52	1,2,4-三 氯苯	92.9%	86.4%	84.6%
25	二溴一 氯甲烷	94.2%	88.7%	96.0%	53	六氯丁二 烯	71.2%	71.0%	70.4%

						萘			
27	氯苯	86.3%	86.5%	87.1%	55	1,2,3-三 氯苯	106.2%	98.8%	98.9%

3) 检出限

方法 HJ 810 建议对 10mL 水样进行实验。在全扫模式下,实验的方法检出限与标准检出限作对比。从下表 6 可知,方法检出限范围 $1.5\mu g/L$ -6.2 $\mu g/L$,全部物质检出限均显著优于 HJ 810-2016 标准要求的 $3.0\mu g/L$ - $10.0\mu g/L$ 。

表6 55种目标物全扫模式方法检出限与标准限值信息表

序	/I, /\ 4lm	方法检出限	标准检出限	序	// \ \ #\	方法检出	标准检出限					
号	化合物	(µg/L)	(µg/L)	号	化合物	限(µg/L)	(µg/L)					
1	氯乙烯	3.8	5.0	28	1,1,1,2-四 氯乙烷	2.9	6.0					
2	1,1-二氯 乙烯	2.4	6.0	29	乙苯	3.1	4.0					
3	二氯甲烷	5.5	7.0	30 /3	间,对-二 甲苯	2.9	8.0					
4	反式 -1,2-二 氯乙烯	3.0	4.0	32	邻-二甲苯	2.9	4.0					
5	1,1,-二 氯乙烷	4.2	5.0	33	苯乙烯	2.8	5.0					
6	2,2-二氯 丙烷	2.2	3.0	34	三溴甲烷	6.0	6.0					
7	顺式 -1,2-二 氯乙烯	4.4	7.0	35	异丙苯	2.7	3.0					
8	溴氯甲 烷	5.1	6.0	36	溴苯	3.3	4.0					
9	氯仿	2.1	3.0	37	1,1,2,2-四 氯乙烷	6.0	7.0					
10	1,1,1-三 氯乙烷	2.8	3.0	38	1,2,3-三氯 丙烷	6.1	8.0					
11	1,1-二氯 丙烯	3.0	4.0	39	正丙苯	3.6	4.0					
12	四氯化 碳	2.4	3.0	40	2-氯甲苯	2.7	3.0					
13	苯	3.2	4.0	41	4-氯甲苯	2.6	5.0					
14	1,2-二氯 乙烷	1.6	3.0	42	1,3,5-三甲 基苯	3.5	4.0					

15	三氯乙 烯	3.8	6.0	43	叔丁基苯	2.3	3.0
16	1,2-二氯 丙烷	4.1	5.0	44	1,2,4-三甲 基苯	2.8	3.0
17	二溴甲 烷	2.8	4.0	45	仲丁基苯	3.5	4.0
18	一溴二 氯甲烷	2.6	3.0	46	1,3-二氯 苯	2.9	3.0
19	顺-1,3- 二氯丙 烯	3.8	7.0	47	4-异丙基 甲苯	2.8	3.0
20	甲苯	2.8	3.0	48	1,4-二氯 苯	3.9	5.0
21	反-1,3- 二氯丙 烯	5.5	8.0	49	1,2-二氯 苯	1.8	3.0
22	1,1,2-三 氯乙烷	3.9	5.0	50	正丁基苯	2.5	3.0
23	四氯乙 烯	2.8	3.0	51	1,2-二溴 -3-氯丙烷	6.2	10.0
24	1,3-二氯 丙烷	2.7	5.0	52	1,2,4-三氯 苯	4.5	6.0
25	二溴一 氯甲烷	3.6	4.0	53	六氯丁二 烯	4.5	7.0
26	1,2-二溴 乙烷	4.8	5.0	54	萘	4.8	8.0
27	氯苯	2.9	4.0	55	1,2,3-三氯 苯	5.3	8.0

2.5 结论

本文依据标准 HJ 810-2016,采用禾信 GCMS 1000 和顶空进样器联用分析了水样中挥发性有机物。实验结果: 55 种挥发性有机物的线性相关系数 r 均大于 0.995,符合标准要求;浓度为 20μg/L 和 100μg/L 的加标精密度 RSD 分别在 3.49%-14.76%和 2.77%-14.87%范围,实验结果均优于相同浓度的标准实验室内精密度 RSD 水平(0.50%-24.00%和 0.40%-28.00%);水样加标回收率在 70.0%-128.9%范围,符合标准基体加标回收率水平(70.0%-130.0%)。目标物方法检出限在 1.5μg/L-6.2μg/L 范围内,显著优于 HJ810-2016标准要求的 3.0μg/L -10.0μg/L。上述结果表明禾信 GCMS 1000 具有优异的重现性和检测灵敏度,完全满足 HJ810-2016 标准要求。

参考文献

[1] HJ810-2016 水质 挥发性有机物的测定 顶空/气相色谱-质谱法

