利用电感耦合等离子体质谱仪 分析污水中65种元素

林泽红 廖菽欢

(广州禾信仪器股份有限公司,广州 510530)

摘要:验证了禾信ICP-MS 1000对HJ 700-2014《水质 65种元素的测定 电感耦合等离子体质谱法》标准方法的适用性。实验结果表明,在标准规定的曲线浓度范围内具有良好的线性关系,精密度为0.2%-16.9%,水样加标回收率为73.3%-123%,方法检出限在0.001µg/L-2.76 µg/L 范围内,表明禾信电感耦合等离子体质谱仪(ICP-MS 1000)性能满足HJ 700-2014污水中65种元素的标准测定要求。

关键字: 污水;元素;电感耦合等离子体质谱法

随着城市的发展,居民生活和生产过程对水的需求量越来越大,同时工业废水及生活污水对环境造成的威胁也与日俱增,甚至还会危害到民众的身体健康和用水安全。因此,为相关人员提供数据参考,实现污水有效处理和资源再利用,对污水中有害元素进行检测和分析显得愈发重要。

本文利用电感耦合等离子体质谱仪, 依据 HJ 700-2014《水质 65 种元素的测定 电感耦合等离子体质谱法》,污水中的 65 种元素检测方法,通过测定检出限、精密度和正确度等指标评估验证,证明 ICP-MS 1000 满足地表水中 65 种元素检测的需要。

1 材料和方法

1.1 样品制备

准确量取 40.0mL 摇匀后的污水样品于 80 mL 聚四氟乙烯消解管中,加入 1 mL 浓硝酸溶液于上述消解管中,置于石墨炉 100°C温度下加热消解直至 30 mL 停止加热,轻微盖上盖子待样品回流冷却后,将消解液移至 50 mL 容量瓶中,用超纯水清洗消解管至少 3 次,并将冲洗液倒入 50 mL 容量瓶中,最后用超纯水定容至 40 mL,摇匀待测。用超纯水代替样品,按照以上步骤制备实验室空白样品。

1.2 仪器条件

表 1 仪器基本设定参数

射频功率(W)	1550
倍增器电压(V)	1190(正)、-1820(负)
载气流速 (L/min)	1.04
碰撞气流速(mL/min)	1.68
采样深度 (mm)	6.00
提取电压(V)	-773

1.3 实验操作

1) 仪器调谐

点燃等离子体后,仪器预热30 min。首先在标准模式下用1.0 μg/L调谐溶液对仪器的灵敏度、氧化物和双电荷进行调谐,在仪器的灵敏度、氧化物、双电荷满足要求的条件下,调谐溶液中所含元素信号强度的相对标准偏差≤5%;再开启He碰撞反应气,逐步增加He流量,保证仪器灵敏度在满足要求的条件下,尽量降低Fe元素的信号。

2) 标准物质信息与标准曲线

65种标准物质信息见表2。使用含 $1\%HNO_3$ 基质溶液配制标准曲线(硼、磷使用 H_2O 配制)。内标浓度为 $50.0\mu g/L$ 。

表 2 65 种元素标准物质信息表

		77		
序号	元素	标准曲线浓度(μg/L)	标准储 备溶液	生产厂商
			(mg/L)	
1	银 Ag	0, 0.5, 1, 2, 5, 20	100	坛墨质检-标准物质中心
2	铝 Al	0, 10, 20, 40, 60, 100, 200	1000	国家有色金属及电子材料分析测试中心
3	砷 As	0, 0.5, 1, 2, 5, 20	10	安捷伦
4	硼B	0, 10, 20, 40, 60, 100, 200	1000	国家有色金属及电子材料分析测试中心
5	钡 Ba	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
6	铍 Be	0, 0.5, 1, 2, 5, 20	10	安捷伦
7	钙 Ca	0, 10, 20, 40, 60, 100, 200	100	坛墨质检-标准物质中心
8	镉 Cd	0, 0.5, 1, 2, 5, 20	10	安捷伦
9	钴 Co	0, 0.5, 1, 2, 5, 20	10	安捷伦
10	铬 Cr	0, 0.5, 1, 2, 5, 20	10	安捷伦
11	铜 Cu	0, 0.5, 1, 2, 5, 20	10	安捷伦
12	铁 Fe	0, 10, 20, 40, 60, 100, 200	1000	国家有色金属及电子材料分析测试中心
13	钾 K	0, 10, 20, 40, 60, 100, 200	100	坛墨质检-标准物质中心
14	锂 Li	0, 0.5, 1, 2, 5, 20	10	安捷伦
15	镁 Mg	0, 10, 20, 40, 60, 100, 200	100	坛墨质检-标准物质中心
16	锰 Mn	0, 10, 20, 40, 60, 100, 200	1000	国家有色金属及电子材料分析测试中心
17	钼 Mo	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
18	钠 Na	0, 10, 20, 40, 60, 100, 200	100	坛墨质检-标准物质中心
19	镍 Ni	0, 0.5, 1, 2, 5, 20	10	安捷伦
20	铅 Pb	0, 0.5, 1, 2, 5, 20	10	安捷伦

21	锑 Sb	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
22	硒 Se	0, 0.5, 1, 2, 5, 20	10	安捷伦
23	锡 Sn	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
24	锶 Sr	0, 0.5, 1, 2, 5, 20	10	安捷伦
25	钍 Th	0, 0.5, 1, 2, 5, 20	100	核工业北京化工冶金研究院
26	钛 Ti	0, 10, 20, 40, 60, 100, 200	1000	国家有色金属及电子材料分析测试中心
27	铊 Tl	0, 0.5, 1, 2, 5, 20	10	安捷伦
28	铀 U	0, 0.5, 1, 2, 5, 20	100	核工业北京化工冶金研究院
29	钒 V	0, 0.5, 1, 2, 5, 20	10	安捷伦
30	锌 Zn	0、10、20、40、60、100、200	1000	国家有色金属及电子材料分析测试中心
31	金 Au	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
32	铋 Bi	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
33	铈 Ce	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
34	铯 Cs	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
35	镝 Dy	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
36	铒 Er	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
37	铕 Eu	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
38	镓 Ga	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
39	锗 Ge	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
40	铪 Hf	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
41	钬 Ho	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
42	铟 In	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
43	铱 Ir	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
44	镧 La	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
45	镥 Lu	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
46	铌 Nb	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
47	钕 Nd	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
48	磷 P	0, 20, 40, 80, 120, 160,	1000	国家有色金属及电子材料分析测试中心
		200		
49	钯 Pd	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
50	镨 Pr	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
51	铂 Pt	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
52	铷 Rb	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
53	铼 Re	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
54	铑 Rh	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
55	钌 Ru	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
56	钪 Sc	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
57	钐 Sm	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
58	铽 Tb	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
59	啼 Te	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
60	铥 Tm	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
61	钨 W	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
62	钇Y	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
63	镱 Yb	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心

64	锆 Zr	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心
65	钆 Gd	0, 0.5, 1, 2, 5, 20	1000	国家有色金属及电子材料分析测试中心

2 结果与讨论

2.1 方法线性关系和检出限

根据《环境监测分析方法标准制订技术导则》(HJ 168-2020),按照样品分析的全部步骤,重复测定 7 次空白溶液。若空白试验中未检出目标物质,对浓度值为预估方法检出限值 3~5 倍的样品进行 7 次平行测定,按照公式 MDL=3.14×S(S 为 7 次空白的标准偏差)。结果显示,65 种元素的线性相关系数 R^2 均大于 0.999(超过 86%的元素 R^2 大于 0.9999),显著优于标准 R^2 >0.999的要求。在碰撞模式损失灵敏度的情况下,低质量数元素铍、硼等仍保持良好的灵敏度并作出满足标准要求的标准曲线,体现了 ICP-MS 1000 碰撞反应池系统的优异性能,数据详见表 3。

表 3 65 种元素的方法检出限与标准检出限

质量数	元 素	线性 相关 系数 R ²	实测检 出限 (μg/L)	标准要 求检出 限 (µg/L)	模式	质量数	元素	线性 相关 系数 R ²	实测检 出限 (μg/L)	标准要 求检出 限 (µg/L)	模式
7	Li	0.999 9	0.01	0.33	碰撞	11 4	Cd	0.999 9	0.01	0.05	碰 撞
9	Be	0.999 9	0.01	0.04	碰撞	11 5	In	0.999 9	0.01	0.03	碰 撞
11	В	0.999 7	1.10	1.25	碰 撞	11 8	Sn	0.999 9	0.02	0.08	碰 撞
23	Na	0.999 7	2.76	6.36	碰 撞	12 1	Sb	0.999 9	0.01	0.15	碰 撞
24	M g	0.999	0.15	1.94	碰 撞	12 5	Te	0.999 9	0.03	0.05	碰 撞
27	Al	0.999	0.31	1.15	碰 撞	13 3	Cs	0.999 9	0.01	0.03	碰 撞
31	P	0.999 8	0.98	19.6	碰 撞	13 8	Ba	0.999 8	0.07	0.20	碰 撞
39	K	0.999 7	1.35	4.50	碰 撞	13 9	La	0.999 9	0.001	0.02	碰 撞
44	Ca	0.999	1.27	6.61	碰 撞	17 8	Hf	0.999 9	0.002	0.03	碰 撞
45	Sc	0.999 9	0.04	0.15	碰撞	18 2	W	0.999 9	0.02	0.43	碰撞
47	Ti	0.999	0.11	0.46	碰	18	Re	0.999	0.001	0.04	碰

		9			撞	7		9			撞
		0.999			碰	19	_	0.999			碰
51	V	9	0.01	0.08	撞	3	Ir	9	0.001	0.04	撞
		0.999			碰	19		0.999			碰
52	Cr	9	0.01	0.11	撞	5	Pt	9	0.002	0.03	撞
	M	0.999			碰	19		0.999			碰
55	n	9	0.04	0.12	撞	7	Au	9	0.003	0.02	撞
		0.999			碰	20		0.999			碰
57	Fe	9	0.15	0.82	撞	5	Tl	9	0.001	0.02	撞
		0.999			碰	20		0.999			碰
59	Co	9	0.01	0.03	撞	8	Pb	9	0.01	0.09	撞
		0.999			碰	20		0.999			碰
60	Ni	9	0.03	0.06	撞	9	Bi	9	0.01	0.03	撞
		0.999			碰	14		0.999			碰
63	Cu	9	0.03	0.08	撞	0	Ce	9	0.003	0.03	撞
		0.999			碰	14		0.999			碰
64	Zn	9	0.03	0.67	撞	1	Pr	9	0.001	0.04	撞
		0.999			碰	14		0.999	•		碰
69	Ga	9	0.01	0.02	撞	6	Nd	9	0.002	0.04	撞
		0.999			碰	14		0.999			碰
74	Ge	9	0.01	0.02	撞	7	Sm	9	0.001	0.04	撞
		0.999			碰	15		0.999			碰
75	As	9	0.06	0.12	撞	3	Eu	9	0.002	0.04	撞
		0.999			碰	15		0.999			碰
78	Se	6	0.11	0.41	撞	7	Gd	9	0.001	0.03	撞
		0.999		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	碰	15		0.999			碰
85	Rb	9	0.01	0.04	撞	9	Tb	9	0.001	0.05	撞
		0.999			碰	16		0.999			碰
88	Sr	9	0.01	0.29	撞	3	Dy	9	0.001	0.03	撞
		0.999			碰	16		0.999			碰
89	Y	9	0.01	0.04	撞	5	Ho	9	0.001	0.03	撞
		0.999			碰	16		0.999			碰
90	Zr	9	0.03	0.04	撞	6	Er	9	0.001	0.02	撞
4		0.999			碰	16	T	1.000			碰
93	Nb	9	0.01	0.02	撞	9	m	0	0.001	0.04	撞
	M	0.999			碰	9 17	111	0.999			碰
98		9	0.02	0.06	撞	2	Yb	9	0.001	0.05	撞
10	0										
10	Ru	0.999 9	0.01	0.05	碰	17 5	Lu	0.999 9	0.001	0.04	碰 撞
2					撞磁			-			
10	Rh	0.999 9	0.01	0.03	碰	23	Th	0.999 9	0.03	0.05	碰
3		-			撞磁	2		-			撞 碰
10	Pd	0.999 9	0.01	0.02	碰 撞	23	U	0.999 9	0.01	0.04	
8		-	0.01	0.04		8		9			撞
10	Ag	0.999	0.01	0.04	碰						

注: Pb的数据基于206、207和208同位素之和。

2.2 实际样品加标回收实验

对水样进行3个浓度各6次平行加标测试。样品有检出时,加标浓度为样品浓度的0.5~3倍;样品未检出时,加标浓度为曲线低、中、高3个浓度水平。其中,K、Mg、Ca、Na、Mn、Fe、Al、Zn、Ti、B 加标浓度均分别为 10.0μg/L、40.0μg/L、100.0μg/L; Sr 元素加标浓度分别为 1.0μg/L、2.0μg/L、4.0μg/L; P 元素加标浓度分别为 20.0μg/L、80.0μg/L、160.0μg/L; 剩余 53 种元素的加标浓度均分别为 0.5μg/L、2.0μg/L、20.0μg/L;通过对以上溶液进行测试,评估测试结果得到精密度与正确度,结果详见表 4 和表 5。

1) 精密度

表 4 结果显示,65 种元素低浓度加标水平的相对标准偏差(RSD)在 0.6%-16.9%范围内,中浓度加标水平的 RSD 在 0.2%-11.1%之间,高浓度加标水平的 RSD 在 0.2%-4.3%,实验结果显著优于标准要求的精密度(RSD≤20%)。

	42 4 31 4T/USR/N-11-11H	10·18 11/52
	精密度(%)	

质量数	一一去	精	密度(%	(o)	医悬粉	一一表	**************************************	青密度(%	<u>(a)</u>
灰里剱	元素	低	中	高	质量数	元素	低	中	髙
7	Li	4.4	2.0	1.5	114	Cd	2.7	1.5	1.1
9	Be	3.1	2.8	1.2	115	In	4.9	3.8	0.8
11	В	5.4	5.4	1.3	118	Sn	7.3	2.3	2.1
23	Na	2.6	2.2	1.0	121	Sb	7.7	1.9	1.9
24	Mg	0.6	0.9	0.4	125	Te	16.9	4.0	2.0
27	Al	0.8	1.4	0.9	133	Cs	2.6	1.3	0.7
31	P	7.5	1.2	1.4	138	Ba	2.2	0.9	1.4
39	K	1.1	1.0	0.6	139	La	5.3	3.5	0.7
44	Ca	0.7	1.5	2.2	178	Hf	4.7	1.4	1.4
45	Sc	2.6	0.9	1.0	182	\mathbf{W}	6.7	0.9	0.8
47	Ti	1.0	0.8	1.1	187	Re	5.6	0.5	1.3
51	\mathbf{V}	1.0	0.9	1.1	193	Ir	5.6	3.1	1.0
52	Cr	1.6	1.3	1.0	195	Pt	1.7	0.8	1.0
55	Mn	3.6	3.0	3.5	197	Au	8.2	3.1	1.0
57	Fe	2.0	2.7	2.0	205	Tl	0.9	0.8	1.1
59	Co	1.3	1.2	0.7	208	Pb	1.3	1.3	1.2
60	Ni	2.1	1.9	1.6	209	Bi	1.0	0.6	1.6
63	Cu	1.3	1.0	1.3	140	Ce	7.0	3.8	0.7
64	Zn	0.6	0.2	0.5	141	Pr	4.9	3.6	1.0
69	Ga	2.0	0.5	0.6	146	Nd	4.9	3.8	1.1
74	Ge	4.5	1.1	0.8	147	Sm	7.4	3.1	0.9
75	As	12.2	11.1	2.1	153	Eu	5.2	3.3	0.8

78	Se	8.5	7.3	4.3	157	Gd	5.5	3.7	1.0
85	Rb	1.4	1.4	0.9	159	Tb	5.1	3.6	1.2
88	Sr	2.4	2.2	0.5	163	Dy	6.2	4.0	1.0
89	Y	5.9	3.7	1.0	165	Ho	5.9	3.4	0.8
90	Zr	3.7	1.2	1.1	166	Er	5.7	3.7	0.9
93	Nb	5.9	0.7	0.8	169	Tm	5.6	3.4	1.0
98	Mo	1.3	0.7	0.2	172	Yb	6.1	3.0	1.1
102	Ru	3.9	1.2	0.6	175	Lu	5.7	3.1	1.1
103	Rh	0.7	0.8	1.1	232	Th	5.6	2.0	0.9
108	Pd	6.6	2.4	1.1	238	U	1.0	0.9	0.6
107	Ag	1.0	0.7	1.2					

2) 正确度

表 5 加标回收率结果显示,31 种元素低浓度加标水平的回收率在73.3%-123%之间,中浓度加标水平的回收率在83.5%-123%,高浓度加标水平的回收率在84.1%-120%,均满足加标回收率标准测定要求(70.0%-130%)。

表 5 31 种元素水样加标回收率

医具粉	二字	加标	回收率	(%)	医具 數	二字	加村	示回收率((%)
质量数	元素	低	中	高	质量数	元素	低	中	高
7	Li	98.7	83.5	88.5	114	Cd	103	99.1	101
9	Be	96.2	91.3	94.4	115	In	101	90.4	89.5
11	В	78.2	114	113	118	Sn	115	106	107
23	Na	110	111	112	121	Sb	109	99.4	105
24	Mg	73.3	98.5	100	125	Te	93.2	92.0	95.3
27	Al	120	115	120	133	Cs	104	101	103
31	P	85.5	112	106	138	Ba	101	96.9	94.2
39	K	78.2	103	102	139	La	104	92.8	91.4
44	Ca	123	106	107	178	Hf	102	103	103
45	Sc	107	108	112	182	\mathbf{W}	99.3	102	107
47	Ti	116	117	119	187	Re	102	107	104
51	V	114	110	110	193	Ir	107	99.3	100
52	Cr	109	104	107	195	Pt	96.5	101	98.0
55	Mn	105	109	104	197	Au	104	101	110
57	Fe	88.0	94.9	84.1	205	Tl	96.8	93.4	95.4
59	Co	108	104	106	208	Pb	98.9	92.6	94.3
60	Ni	104	100	101	209	Bi	87.9	89.0	87.6
63	Cu	96.0	94.1	97.4	140	Ce	102	92.8	92.3
64	Zn	103	100	103	141	Pr	105	93.4	91.8
69	Ga	104	102	103	146	Nd	104	94.2	93.0
74	Ge	100	103	102	147	Sm	104	94.9	93.2
75	As	79.6	86.4	91.0	153	Eu	104	93.9	93.2
78	Se	103	103	103	157	Gd	104	94.8	94.2
85	Rb	105	103	105	159	Tb	103	95.2	94.5

88	Sr	107	104	106	163	Dy	104	95.2	94.8
89	Y	102	93.8	92.6	165	Ho	105	95.8	94.9
90	Zr	113	115	115	166	Er	107	96.6	95.5
93	Nb	117	123	120	169	Tm	105	96.6	95.7
98	Mo	105	104	105	172	Yb	105	96.4	94.8
102	Ru	112	113	109	175	Lu	105	95.5	94.7
103	Rh	105	104	104	232	Th	83.9	91.2	96.8
108	Pd	96.0	94.1	95.9	238	U	95.5	98.0	98.4
107	Ag	102	100	101					

注: Na、Ca稀释1000倍, Mg、K稀释500倍,除P外,其余均稀释10倍后进行加标计算。

3 结论

本文采用电感耦合等离子体质谱仪(ICP-MS 1000),依据 HJ 700-2014 标准要求,分析了污水中的 65 种元素。结果表明: 65 种元素在给定的曲线浓度范围内线性良好; 精密度 RSD 在 0.2%-16.9%之间; 水样加标回收率在 73.3%-123%之间,检出限、精密度和正确度均符合标准的测定要求。表明禾信 ICP-MS 1000 对污水的元素测定完全满足 HJ 700-2014 标准要求。

参考文献

[1] HJ 700-2014 《水质 65 种元素的测定 电感耦合等离子体质谱法》